
Drop It In Like It’s Hot: An Analysis of Persistent Memory
as a Drop-in Replacement for NVMe SSDs
Maximilian Böther, Otto Kißig, Lawrence Benson, Tilmann Rabl

Hasso Plattner Institute, University of Potsdam
{maximilian.boether,otto.kissig}@student.hpi.de,{lawrence.benson,tilmann.rabl}@hpi.de

ABSTRACT
Solid-state drives (SSDs) have improved database system perfor-
mance significantly due to the higher bandwidth that they provide
over traditional hard disk drives. Persistent memory (PMem) is a
new storage technology that offers DRAM-like speed at SSD-like
capacity. Due to its byte-addressability, research has mainly treated
PMem as a replacement of, or an addition to DRAM, e.g., by propos-
ing highly-optimized, DRAM-PMem-hybrid data structures and
system designs. However, PMem can also be used via a regular file
system interface and standard Linux I/O operations. In this paper,
we analyze PMem as a drop-in replacement for Non-Volatile Mem-
ory Express (NVMe) SSDs and evaluate possible performance gains
while requiring no or only minor changes to existing applications.
This drop-in approach speeds-up database systems like Postgres,
without requiring any code changes. We systematically evaluate
PMem and NVMe SSDs in three database microbenchmarks and
the widely used TPC-H benchmark on Postgres. Our experiments
show that PMem outperforms a RAID of four NVMe SSDs in read-
intensive OLAP workloads by up to 4x without any modifications
while achieving similar performance in write-intensive workloads.
Finally, we give four practical insights to aid decision-making on
when to use PMem as an SSD drop-in replacement and how to
optimize for it.

ACM Reference Format:
Maximilian Böther, Otto Kißig, Lawrence Benson, Tilmann Rabl. 2021. Drop
It In Like It’s Hot: An Analysis of Persistent Memory as a Drop-in Re-
placement for NVMe SSDs. In International Workshop on Data Manage-
ment on New Hardware (DAMON’21), June 20–25, 2021, Virtual Event, China.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3465998.
3466010

1 INTRODUCTION
Today’s data-driven industry relies heavily on databases that effi-
ciently process huge amounts of data. In the last decade, database
deployments shifted from hard disk drives to flash-based storage
(SSD), following the trend of faster available storage at high ca-
pacity. More recently, Non-Volatile Memory Express (NVMe) SSDs
achieve even higher performance and are making their way into
modern database deployments to enable even more data-intensive

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
DAMON’21, June 20–25, 2021, Virtual Event, China
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8556-5/21/06…$15.00
https://doi.org/10.1145/3465998.3466010

processing. However, the emergence of persistent memory (PMem)
makes a new and fast storage technology available. PMem pro-
vides persistent data storage at SSD-like capacity while achieving
close-to-DRAM performance. Many enterprise deployments rely
on the stability of well-established database management systems
like Postgres. These systems put stability and reliability over adop-
tion of the latest research results. Thus, instead of changing the
algorithms or storage layout, one way to speed up enterprise deploy-
ments without requiring code changes is exchanging the underlying
hardware. PMem as the underlying storage layer has the potential
to cause a new major database performance shift.

Recent work mostly views PMem as a supplement to DRAM,
between SSDs and DRAM in the memory hierarchy [8, 22, 43].
The commercial release of Intel® Optane™ DC Persistent Memory
in 2019 has enabled the first performance studies of real-world
persistent memory DIMMs [11, 18, 49]. Many PMem-aware data
structures that utilize PMem as a replacement or addition to DRAM
have been proposed [8, 21, 23, 25, 29, 44]. In contrast, in this paper
we evaluate PMem as a fast storage technology that may replace
NVMe SSDs, not DRAM, for storing large data volumes in databases.

Recent performance studies observe the high bandwidth PMem
offers, reaching up to 40 GiB/s for sequential reads [11]. Modern
NVMe SSDs on the other hand are physically limited at 7.3 GiB/s
by the maximum supported four PCIe 4.0 lanes. In light of this
significant difference, we provide insights into how PMem performs
when used as a drop-in replacement for SSD storage in typical
database management workloads. To this end, we interact with
PMem via a filesystem interface and standard Linux I/O operations.
To provide results in more realistic system setups than previous
work [43, 47], we evaluate six DIMMs and up to four NVMe SSDs
in our benchmarks, which allows for higher degrees of parallelism
in both storage technologies.

In this paper, we compare PMem and NVMe SSDs in three data-
base workload microbenchmarks, table scan, buffer management,
and logging. We then show the impact of PMem in a real database
system by running TPC-H on Postgres with PMem and NVMe
SSDs as the storage layer. We discuss our findings and propose how
to integrate PMem into existing systems and how to optimize for it
when used as an SSD drop-in replacement. In summary, we make
the following contributions:

1) We evaluate realistic PMem and NVMe SSD setups in common
database workloads.

2) We run TPC-H on Postgres with PMem and NVMe SSDs as
the storage medium to show the impact of a PMem drop-in
replacement in real database systems and workloads.

3) We summarize our findings in four practical insights to aid
decision-making on when to use PMem as an SSD drop-in re-
placement and how to optimize for it.

https://doi.org/10.1145/3465998.3466010
https://doi.org/10.1145/3465998.3466010
https://doi.org/10.1145/3465998.3466010

DAMON’21, June 20–25, 2021, Virtual Event, China Maximilian Böther, Otto Kißig, Lawrence Benson, Tilmann Rabl

The remainder of this paper is structured as follows. In Section 2,
we introduce PMem and NVMe SSDs. We evaluate the performance
of PMem and NVMes in database workload microbenchmarks (Sec-
tion 3) and the TPC-H benchmark (Section 4). We discuss our
findings in Section 5 and our related work in Section 6, before
concluding in Section 7.

2 BACKGROUND
In this paper, we compare persistent memory (PMem) and Non-
Volatile Memory Express Solid-State Drives (NVMe SSDs). Both of
these storage media are a type of non-volatile memory, which re-
tain data even without power. In the following, we give a clear
conceptual clarification of both technologies.

2.1 Persistent Memory
Persistent memory is the currently established term for non-volatile
main memory. Previously, it has also been called storage class mem-
ory (SCM) or non-volatile memory (NVM/NVRAM), which fre-
quently led to confusion, as PMem is not the only type of non-
volatile memory. Unlike other non-volatile memory technologies,
e.g., SSDs, PMem is byte-addressable like DRAM, but also persistent.
The first widely available persistent memory technology currently
available is Intel® Optane™ DC Persistent Memory, which comes
in DIMMs in sizes of up to 512GiB. Optane is the brand name for
the 3D XPoint non-volatile memory technology, which is a general
non-volatile memory medium. Based on this, Intel released both
Optane persistent memory modules as well as Optane SSDs. In this
paper, we refer to Optane DC Persistent Memory as PMem.

Other PMem products are in development, which do not build
on 3D XPoint technology, e.g., Fujitsu and Nantero plan to release
PMem modules based on Nano-RAM (NRAM) technology, which
utilizes carbon nanotubes [24, 26], and there are other technologies,
like phase-change memory [19, 36, 50], resistive RAM [4], and
MRAM [13]. Because of this future PMem could largely differ in its
observed behavior and even embedding into the system.

PMem DIMMs are connected to the CPUs integrated memory
controllers (iMCs) via memory channels, like regular DRAM. The
iMC keeps a read and write pending queue (RPQ/WPQ) of opera-
tions, which mark the beginning of the asynchronous DRAM re-
fresh domain, in which persistence is guaranteed. Optane memory
has an internal granularity of 256 B, while the CPU has a cache-line
granularity of 64 B, which causes write amplification for stores
smaller than 256 B. The DIMMs are commonly configured inter-
leaved, striping the data in 4 KiB blocks, to enable parallel access.

We employ the App Direct Mode of the DIMMs, which enables
direct access (dax) to PMem, either using a character-device (dev-
dax) or using a mounted filesystem (fsdax). PMem can also be used
in Memory Mode, in which it provides a transparent extension of
DRAMwithout persistency guarantees. The widespread filesystems
ext4 and xfs are dax-aware, skipping the kernel I/O layer when
mmaping a region of or reading from a file stored on an fsdax de-
vice. Data access is possible on various levels of abstraction, from
standard I/O functions (open, read, write), over memory-mapping
operations (mmap, msync), to Intel ISA additions in order to explic-
itly flush cache lines (clwb, ntstore, sfence). An explicit call to

Socket #0

PMem DIMM

PMem DIMM

PMem DIMM

LLC

iMC iMC

3x PMem DIMM

18 physical,
36 logical

4x PCIe

4x PCIe

4x PCIe

4x PCIe

UPI

Core Core
NVMe

NVMe

NVMe

NVMe

Figure 1: Overview of our system.

ensure data persistence is necessary and depends on the type of
I/O used (fsync, msync, clwb).

2.2 NVMe SSDs
SSDs are secondary storage devices that do not require mechanical
components. These storage devices are commonly based on NAND
flash chips. However, some newer SSDs use other media instead of
flash, e.g., 3D XPoint. SSDs can be connected to the system using
different interfaces, for example, NVM Express (NVMe), which is
a register-level host-controller interface specifically optimized for
accessing SSDs via the PCIe standard [16, 28]. NVMe SSDs are
successors of the classical SATA SSDs, which commonly rely on
AHCI as the host-controller interface. The physical connection of
NVMe SSDs is not limited to PCIe slots and is oftentimes realized via
M.2 connectors, a form factor standard for physical device layouts.

The NVMe interface allows for better exploitation of parallelism
of the storage medium. Internally, SSDs feature built-in controllers,
buffers, and caches, requiring complex access logic. NAND-based
SSDs are organized in blocks, that are sub-divided in pages, with a
common page size varying between 2KiB to 16 KiB, and common
block sizes from 256KiB to 4MiB [15]. From an operating system
perspective, SSDs are block devices, not offering byte-addressable
access. SSDs are inherently parallel, allowing them to serve multiple
requests at once and reducing their sensitivity to access patterns [6,
7]. Typically, they are accessed using standard I/O functions or
memory-mapping and, like PMem, require an explicit function call
to ensure persistence (fsync, msync).

3 WORKLOAD MICROBENCHMARKS
To gain a better understanding of PMem as a drop-in replacement
for NVMe SSDs, we run three workload microbenchmarks that
reflect basic database operators. These are a table scan, a buffer
management workload, and a logging workload. The workloads
cover both sequential and random read and write tasks and, thus,
provide a good basis for database-relevant performance.

3.1 Setup and Methodology
We show our system setup in Figure 1. All of our experiments are
conducted on a server with two Intel Xeon Gold 5220S processors
with 18 cores (36 logical cores in total with hyperthreading). We
use hyperthreading and bind all experiments to one socket via
numactl to avoid cross-socket access.We use Intel DC P4610 1.6 TiB
SSDs, which are TLC 3D NAND NVMe SSDs, and Intel Optane DC

Drop It In Like It’s Hot: An Analysis of Persistent Memory as a Drop-in Replacement for NVMe SSDs DAMON’21, June 20–25, 2021, Virtual Event, China

Table 1: Comparison of PMem and NVMe in our server.

R/W Bandwidth GiB/s
Sequential Random Capacity $/GiB Access Modes

PMem 40 / 12 30 / 9 750 GiB 5.43 FS, Block, Char
NVMe 3.2 / 2.1 2.6 / 0.9 1500 GiB 0.36 FS, Block

Persistent Memory 128GiB modules. All NVMes are connected to
the same socket using 4 PCIe lanes each. We use fio [3] to verify
that there is no performance difference between the NUMA nodes
when accessing the drives. PMem DIMMs are connected to the
CPU via memory channels. Additionally, we benchmark a pseudo-
RAID 0 of four NVMes, in which data is striped across the NVMes,
similar to interleaved PMem. We do not utilize a regular RAID 0 for
the microbenchmarks as our approach gives us more fine-grained
control on how data is distributed. To enable a drop-in replacement
of SSDs, we access PMem using fsdax. The server runs Ubuntu 20.04
LTS with kernel 5.4.

Similar to fio [3], we set a POSIX_FADV_DONTNEED hint to pre-
vent measuring cached data in DRAM. We randomly initialize all
of the buffer files and randomly scramble the files between two
runs, to prevent caching. It is not sufficient to rely on the O_DIRECT
flag to prevent caching, as it has no effect on dax-enabled storage
devices like PMem, and it disables prefetching mechanisms, which
we analyze separately. Scrambling provides a clean system between
runs, but enables the operating system to optimize within a single
run. We run all benchmarks in our custom benchmark framework,
which is publicly available on GitHub1.

3.2 Hardware Comparison
To gain an intuition about performance of NVMe SSDs and PMem
as used in our server, we compare one NVMe with a full PMem
setup in Table 1. For NVMe, the values are based on the hardware
specification [17]. As there is no official performance specification
for fully-stocked PMem, we provide the peak performance of pre-
vious work [11, 18, 49]. With respect to bandwidth, we see that
PMem is an order of magnitude faster than NVMe, for both se-
quential and random speeds. As discussed in Section 2.1, as PMem
is byte-addressable, it can also be accessed as a character device.
The performance of NVMe scales with additional devices while
PMem requires additional CPUs to scale further. Last, we find that
the price of PMem is an order of magnitude higher than that of
the NVMe SSD, but note that pricing information for PMem is not
stable yet, due to limited market availability [1].

3.3 Table Scan
The table scan workload sequentially reads a 5GiB file per thread,
similar to iterating over rows in a table. To reflect OS and com-
mon SSD page sizes, we test 4 KiB and 16 KiB pages with standard
Linux I/O methods, i.e., read/write, as well as with mmap. We
load all pages to the same DRAM buffer comprising a single page
(4 KiB/16KiB) to allow for L2 caching and to avoid unnecessary
data replication in DRAM. This behavior is similar to the table scan

1https://github.com/hpides/pmem-nvme-dropin

implementation in Postgres [35]. In the following, we first give
performance numbers, discuss the NVMe and PMem results, and
compare Linux I/O to mmap.

Results.The results are shown in Figure 2. For all configurations,
PMem outperforms the NVMes. With PMem, we reach a peak
performance of 31.2 GiB/s when using Linux I/O with 64 threads
and 16KiB pages, which is equivalent to 2Mops/s (million page
operations per second). The NVMe pseudo-RAID reaches 11.2 GiB/s
using Linux I/O with 64 threads, for both 4KiB (3Mops/s) and
16KiB pages (734 Kops/s), while a single NVMe peaks at 2.8 GiB/s
(184 Kops/s for 16 KiB pages and 734 Kops/s for 4 KiB pages) in the
same setting. This means that PMem is more than 11x faster than a
single NVMe.

NVMe Discussion. The pseudo-RAID needs at least 16 threads
to achieve linear scaling over the single NVMe in the same setting.
We do not directly assign threads to drives and access all drives in
a round-robin fashion, which requires more threads to fully utilize
the RAID. Furthermore, as a single NVMe scales with an increasing
thread count, the NVMes benefit from the pseudo-RAID setup only
once a single NVMe is saturated.

For the NVMes, we note that the Linux kernel prefetches data,
which can be tuned using the fadvise syscall. Disabling prefetch-
ing (FADV_RANDOM) lowers the peak performance of the pseudo-
RAID to 4.9 GiB/s and of the single NVMe to 2.5 GiB/s. Especially
the pseudo-RAID configuration benefits from kernel prefetching.
However, enforcing stronger prefetching (FADV_SEQUENTIAL) does
not increase peak performance and increases performance in other
settings by less than 0.5 GiB/s.

PMemDiscussion. Compared to previous work [11, 49], we ob-
serve lower PMem peak bandwidth. Daase et al. measure ~40GiB/s
peak performance for sequential reads, which we can replicate on
our platform using their benchmark tool. The reason that we mea-
sure only 31.2 GiB/s is that previous work uses manually unrolled,
aligned, non-temporal AVX-512 vmovntdqa instructions to move
data from PMem into CPU registers only, while we read data from
PMem to DRAM using standard Linux/C++methods. For Linux I/O,
the read syscall uses the __memcpy_mcsafe kernel function to copy
data from PMem to DRAM, which employs standard, non AVX-512,
movq instructions. For mmap, we use the standard library memcpy
function, which, even when hardcoding the page size, compiles to
unaligned, and non-unrolled vmovdq instructions, as implemented
in the glibc __memmove_avx_unaligned function. Also, Daase et al.
observe slightly lower bandwidth pinning to NUMA nodes instead
of individual cores.Thus, a combination of the above reasons causes
a bandwidth gap when using common system functions.

Our results show that copying data from PMem to DRAM does
not fully saturate PMem’s bandwidth. Thus, we observe better
performance for more threads and larger page sizes, which con-
trasts previous work, that observes that larger page sizes and more
threads do not improve the performance of highly optimized se-
quential reads [11, 49]. This shows that insights gained with highly-
optimized benchmarks are not necessarily transferable to real-world
systems and parameters need to be carefully evaluated for the work-
load at hand. Lastly, as PMem is accessed directly (DAX) without
paging to DRAM, fadvise syscalls have no effect.

Linux I/O vs mmap. There is a small difference between using
Linux I/O and mmap. For 4 KiB pages, Linux I/O is a little faster

https://github.com/hpides/pmem-nvme-dropin

DAMON’21, June 20–25, 2021, Virtual Event, China Maximilian Böther, Otto Kißig, Lawrence Benson, Tilmann Rabl

1 8 16 32 64
0
5
10
15
20
25
30

thread count

ba
nd

w
id
th

[G
iB
/s
]

4 KiB pages

1 8 16 32 64
0
5
10
15
20
25
30

thread count

16 KiB pages

nvme1_LINUX nvme4_LINUX pmem_LINUX
nvme1_MMAP nvme4_MMAP pmem_MMAP

Figure 2: Bandwidth for the table scan workload.

1 8 16 32 64
0

5

10

15

thread count

ba
nd

w
id
th

[G
iB
/s
]

0% writes

1 8 16 32 64
0

5

10

15

thread count

20% writes

nvme1 nvme4 pmem

1 8 16 32 64
0

5

10

15

thread count

80% writes

Figure 3: Bandwidth for the buffer management workload
with 4KiB pages.

than mmap in all configurations. For 16 KiB pages, the behavior for
PMem is a little more nuanced, as mmap is better for lower thread
counts, but beginning with 32 threads Linux I/O is faster. Both I/O
methods perform direct access on PMem, and thereby do not differ
in caching behavior. Therefore, the performance difference is again
caused by the used move instructions and copy loops.

Summary. PMem significantly outperforms the single NVMe
and pseudo-RAID for the read-only table scan workload. Unlike pre-
vious benchmarks that were heavily optimized and PMem-bound,
we observe that a larger thread count and larger page sizes are
preferable to increase performance for both NVMe and PMem.
Linux I/O performs slightly better than mmap-based paging.

3.4 Buffer Management
The buffer management workload is a random mixed read-write
workload, i.e., we both page in and page out data, from and to
random pages within the data files. We use 5GiB data files and let
each thread execute a total workload of 5 GiB. We test write ratios
of 0 %, 20 %, and 80 %. For a 20 % write ratio, every fifth operation is
a page write. For the write operations, a pool of pages is generated
randomly at the beginning of the benchmark and before a page is
paged out, a randomly chosen byte is altered. Furthermore, unlike
the table scan benchmark, we load data into a 1GiB buffer, which
prevents caching the entire data. In the following, we first discuss
the performance results depending on page size and write ratio,
and then compare Linux I/O to mmap+msync and libpmem2.

1 8 16 32 641 8 16 32 64
0

1

2

3

4

5

.1 1.0 1.7 2.8 3.8
.1 .8 1.3 .3 .3

thread count

re
la
tiv

e
ba

nd
w
id
th

4 NVMe Pseudo-RAID

LINUX
MMAP

1 8 16 32 641 8 16 32 641 8 16 32 64
0

1

2

3

4

5

.5 2.8 3.4 4.0 4.3

2.7

8.5

6.3
5.9 5.9

.005 .03 .06 .07 .07

thread count

PMem

LINUX
LIBPMEM2

MMAP

Figure 4: Relative bandwidth of mmap+msync and libpmem2 to
Linux I/O for the buffer management workload, for 4KiB
pages and 80% writes. Note that the plot shows relative per-
formance, and absolute performance numbers in GiB/s for
each data point are given.

Results. The results for Linux I/O and 4KiB pages are shown
in Figure 3. Larger page sizes exhibit similar trends with slightly
higher bandwidths, as more data is read sequentially. Comparing
0 %writes to the previous table scan results, the bandwidth of PMem
drops to 18.5GiB/s (4.8Mops/s) because the workload reads ran-
domly selected pages instead of sequentially scanning, preventing
prefetching of pages. Furthermore, the workload cannot utilize the
L2 cache as in the table scan workload, because we force a write
into DRAM. Moving up to 20% write operations has a significant
impact on PMem, resulting in a more than halved bandwidth of
8.2 GiB/s (2.1Mops/s). For NVMe SSDs, increasing the write ratio
increases performance, which indicates that random writes scale
better than random reads in this workload. Our random access reads
are memory-latency bound as each access requires the complete
access cycle to the NVMe SSD without any prefetching mechanism.
This high access latency also explains the bad scaling of the NVMe
pseudo-RAID in our evaluation. To verify this latency bound, we run
the benchmark with more than 64 threads and observe improved
RAID performance, as the RAID’s bandwidth is not saturated. On
the other hand, writing is not latency-bound and can scale with
multiple NVMes.

Linux I/O vs mmap+msync. Instead of Linux I/O, it is possible to
use mmap and memcpy to page data in and out. To persist data, we
use the msync syscall. In Figure 4, we compare the bandwidth of
mmap relative to Linux I/O for 80 % writes and 4 KiB pages, i.e., the
bandwidth of mmap divided by the bandwidth of Linux I/O. We see
that for PMem, mmap performs poorly, only reaching 1-2 % of the
bandwidth of Linux I/O. For NVMes with low thread counts, mmap
reaches around 90 % of the Linux I/O bandwidth, but drops to 10 % of
the bandwidth for higher thread counts.The msync syscall is known
to result in poor performance, as (1) msync does not acknowledge
non-temporal stores by memcpy, i.e., redundantly flushing data that
has been flushed already and (2) msync requires locks of kernel-
internal data structures, serializing multi-threaded code [31, 41].
Our findings are in line with previous work, which identifies the
global I/O queue lock as a major bottleneck [5]. We observe the
same performance drop in libpmem2 when forcing it to use msync,
indicating that this is a general PMem issue.

Linux I/O vs libpmem2. To avoid fsync and msync on PMem,
we test an I/O layer based on libpmem2, which is provided by In-
tel’s Persistent Memory Development Kit (PMDK) [32]. This layer is

Drop It In Like It’s Hot: An Analysis of Persistent Memory as a Drop-in Replacement for NVMe SSDs DAMON’21, June 20–25, 2021, Virtual Event, China

aware of the underlying storage technology and uses memory store
instructions to ensure persistence for dax-enabled devices instead of
kernel-provided file functions. For NVMes, the results are identical
to mmap+msync as PMDK also uses msync. However, for PMem this
avoids a syscall and instead utilizes fast memory-store instructions
to ensure persistence. In Figure 4, next to the relative performance
of mmap+msync to Linux I/O, we also show the relative performance
of libpmem2 for PMem.The plots show the relative performance, i.e.,
they do not show how absolute performance behaves if the thread
count is varied. The absolute numbers are given at the markers of
the plot. The relative libpmem2 performance approaches the perfor-
mance of Linux I/O for more threads and the absolute performance
of libpmem2 decreases after a peak at 8 threads, because the write
queues are overloaded, which is in line with previous results [11, 49].
We find that for 80 % writes, libpmem2 outperforms standard Linux
I/O up to a factor of 4.7. Absolute libpmem2 performance peaks at
8 threads with 8.5 GiB/s (2.2Mops/s) and then slightly decreases to
a plateau of 6GiB/s (1.6Mops/s). We note that the single-threaded
performance of libpmem2 is 2.7 GiB/s (707 Kops/s), while Linux I/O
only achieves 500MiB/s (128 Kops/s). For read-only access, there is
no performance difference between libpmem2 and mmap+msync.

Summary. For a drop-in replacement using standard I/O, we
observe that as soon as the buffer-management workload becomes
write-heavy and uses enough threads to saturate the NVMe RAID
bandwidth, PMem’s performance advantage becomes marginal.
However, for purely random reads, PMem outperforms SSDs due
to its significantly lower access latency. Compared to Linux I/O, we
see that mmap+msync is not suitable for multi-threaded scenarios
over 16 threads, due to the overhead incurred by msync, especially
for PMem. However, introducing a storage layer-aware library,
such as libpmem2, can improve standard Linux I/O single-threaded
performance by 4.7x for PMem. For multi-threaded write-intensive
workloads, libpmem2 improves PMem performance by 1.4x, but
unlike the table scan workload, does not significantly outperform
the NVMe RAID. Overall, a PMem drop-in replacement offers little
to no improvement over NVMe drives, if the workload mostly
consists of writes and no storage layer-aware library can be used.

3.5 Logging
The logging workload consists entirely of small writes that need
to be persisted in a log file. We test three logging methods, (1) a
Linux I/O approach, in which we append log entries to a newly
created file, (2) a Linux I/O approach that writes log entries into a
recycled log file, and (3) logging into a recycled log file using the
optimized libpmemlog library, provided by PMDK [32]. By com-
paring (1) and (2), we isolate the benefit of physically allocating
log files beforehand, as it is common to recycle log files in database
workloads [33, 37]. Previous work also shows the negative perfor-
mance impact of zeroing new pages in the kernel before writing
to them in PMem [11], making a recycling approach relevant also
to PMem. Each thread has its own log file to avoid measuring con-
currency and locking effects. For the pseudo-RAID, each thread is
assigned one NVMe in a round-robin fashion, such that the work-
load is distributed across all drives. We test both smaller log entry
sizes (128 B), similar to previous work on logging techniques for
PMem [44], and also larger log entry sizes (8 KiB), as Postgres logs

1 8 16 32 64
0

2

4

6

thread count

ba
nd

w
id
th

[G
iB
/s
]

Linux

nvme1_128 nvme4_128 pmem_128
nvme1_8K nvme4_8K pmem_8K

1 8 16 32 64
0

2

4

6

thread count

Linux (recycling)

1 8 16 32 64
0

2

4

6

thread count

libpmemlog

Figure 5: Bandwidth for the logging workload.

in 8 KiB pages by default [34, 39]. Furthermore, 8 KiB entries can
also be understood as logging to a DRAM-backed buffer, which gets
paged-out to disk once full.

Linux-based Logging. The results are shown in Figure 5. For
both Linux I/O-based approaches, the NVMe RAID achieves the
highest bandwidth of up to 6GiB/s (790 Kops/s) when logging 8 KiB
entries into an existing log file. Without using an existing file, even
a single NVMe outperforms PMem both for 128 B and 8KiB log
entries. The performance improvement gained by recycling log
files is significant. Compared to using a new file, the peak per-
formance improves by 3.1x for the single NVMe, by 3.8x for the
RAID, and by 14.1x for PMem. Noticeably, while PMem peaks at
5.4 GiB/s (700Kops/s) using 16 threads and recycling and outper-
forms the RAID until that point, when employing 32 or 64 threads,
the RAID scales and achieves 1.2x higher bandwidth than PMem
for 64 threads.

Libpmemlog Results. When using libpmemlog, PMem outper-
forms the single NVMe by up to an order of magnitude for small log
entries.This is because the byte-addressability of PMem in combina-
tion with a library that leverages more efficient user-space store in-
structions on PMem, e.g., ntstore or clwb, enables efficient logging
compared to relying on expensive kernel-space fsync calls for per-
sistence. Block devices, such as NVMe, that are not byte-addressable
cannot log small entries as efficiently. Using libpmemlog, the gap
between the log entry sizes on PMem is decreased, as for 128 B log
entries, PMem peaks at around 3.9 GiB/s (33Mops/s) (improvement
of 21.7x compared to recycled file), and for 8 KiB entries at around
7.6 GiB/s (1Mops/s, 1.4x improvement). We observe a performance
decrease for more than 8 threads for 8 KiB log entries as, similar to
the buffer management workload, the write queues are overloaded.

However, the NVMe performance drops compared to Linux I/O,
where both the single NVMe and the RAID are 1.7x faster at peak.
The reason for this is that libpmemlog on NVMes relies on msync
instead of fsync, which performs worse, as shown in Section 3.4.

Summary. Recycling log files is critical for both PMem and
NVMes. The RAID scales better in multi-threaded scenarios, outper-
forming PMem by up to 1.2x with log file recycling and 4.4x without
recycling for multiple threads. The libpmemlog experiments show
that the switch from a simple drop-in replacement to a library that
provides a similar API, but differentiates between the underlying
storage technology, leads to a significant performance increase
of up to 21.7x for 128 B log entries on PMem, compared to Linux
logging on a recycled file.

DAMON’21, June 20–25, 2021, Virtual Event, China Maximilian Böther, Otto Kißig, Lawrence Benson, Tilmann Rabl

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 Ø0
100
200
300
400
500 1053 969 1124 1161...

ru
n
tim

e
[s
] nvme1

nvme4
pmem

Figure 6: TPC-H results (scale factor 100) on Postgres running on a single NVMe, a RAID 0 of four NVMes, and PMem.

4 TPC-H BENCHMARK
To better understand the performance impact of NVMes and PMem
in real-world database systems, we run the end-to-end TPC-H
benchmark [42] on Postgres. We run Postgres 13.2 and tune
it towards the memory and CPU specs of our machine based on the
suggestions of PGTune [45] and tuning guides [38, 40]. We vary
the storage backend of Postgres between a single NVMe, a real
RAID 0 of four NVMes (via mdadm), and PMem. After each query,
we restart Postgres and clear its caches to prevent DRAM caching.

We run the TPC-H benchmark with a scale factor of 100. We
use the data schemes and indexes for Postgres as provided by
OLTPBench [10, 12] and rely on the default TPC-H dbgen tool
for data- and query-generation. After loading the data, we run a
VACUUM(ANALYZE) command to let Postgres obtain statistics on
the data on the underlying storage medium.

Results. The results for all queries and the average query time
are shown in Figure 6. We observe that, except for query 18, all
queries run faster on PMem. However, the speedup varies greatly
between almost no speedup for query 18 and a 10.4x speedup for
query 20. We discuss three queries (#3, #5, #18) in more detail
as these represent (1) queries where RAID is faster than a single
NVMe and PMem is faster than the RAID, (2) queries where PMem
is significantly faster than both RAID and single NVMe, and (3)
queries where all storage technologies perform nearly identically.

For query 3, the dominating component is a parallel sequential
scan that reads 86GiB using 9 parallel workers. The query plan
is identical for all storage components. The sequential scan takes
around 30 s for the NVMe RAID and 12 s for PMem. As the query
is dominated by a sequential read, we confirm the observations
from Section 3.3 that the NVMe RAID scales well for sequential
workloads and that PMem achieves higher bandwidth than it.

Query 5 is dominated by a parallel index scan, reading 430GiB of
data using 4 workers. This takes around 15:30minutes for the RAID
and only 1:20minutes for PMem. As the index scan is a random
read workload, we confirm our observation from Section 3.4, for
which the RAID provides almost no performance improvement due
to the latency-bound NVMe SSDs. Due to its low access latency,
PMem outperforms the RAID by a factor of 7.4x for this query.

For query 18, an analysis of the query plan shows that the work-
load is bound by aggregations and hash joins, not by I/O. While a
sequential scan is performed, this does not dominate the run time
and ~70% of the run time is spent on aggregating and joining. As
this query is compute-bound, PMem cannot improve its runtime.

As most queries are random I/O heavy and PMem especially
improves on the latency-bound random read performance on NVMe
SSDs, Postgres executes the average TPC-H query on PMem 4.2x

faster than on a single NVMe and 3.6x faster than on the RAID. The
RAID improves the average run time by only 1.2x compared to a
single NVMe. This verifies the results of our microbenchmarks and
shows that a drop-in replacement of PMem significantly improves
the performance of read-heavy database workloads.

5 DISCUSSION
In this section, we summarize our results and give four practical
insights to aid decision-making on when to use PMem as an SSD
drop-in replacement and how to optimize for it.

Insight 1. For read-intensive workloads, PMem outperforms a
single NVMe by up to 11x and a four-NVMe RAID by 2.8x. Thus,
without application changes a PMem drop-in replacement signifi-
cantly speeds up sequential read workloads.

Insight 2.While previous work suggests specific configurations
for maximum PMem performance, standard Linux/C++ operations
do not fully utilize PMem’s bandwidth. When using these opera-
tions, one should use as many threads as possible and prefer larger
access sizes to maximize the performance of PMem as the storage
medium. However, to reach its full potential in the future, Linux
and glibc operations should be optimized, e.g., by more targeted
use of SIMD move instructions.

Insight 3. As PMem write bandwidth is similar to the NVMe
RAID, a drop-in replacement of PMem for write-intensive work-
loads does not lead to large performance improvements. However,
introducing a PMem-aware I/O layer into the application signifi-
cantly increases PMem write performance, due to efficient memory
store instructions instead of expensive file sync system calls. In the
buffer management workload, libpmem2 outperforms Linux I/O by
up to 4.7x, and libpmemlog improves the logging performance of
small 128 B entries by 21.7x.

Insight 4. In random read workloads, NVMes are latency-bound
and therefore do not scale well in RAID configurations. The latency-
boundedness has a severe impact on both microbenchmark and end-
to-end TPC-H performance. In the buffer management read-only
workload with 64 threads, the NVMe RAID is only 1.5x faster than a
single NVMe, while PMem is 10.1x faster. When choosing between
expanding the storage layers with several NVMes or adding PMem,
one should consider PMem if the workload at hand is dominated
by random I/O, as these suffer from the higher latency of NVMes.

Summary.Overall, the choice of PMem as a drop-in replacement
for NVMe SSDs should be made based on the workload that is
supported by the storage layer. If higher performance without major
code changes is important, then it is possible to employ PMem and
achieve significant speedup. In the future, when access methods

Drop It In Like It’s Hot: An Analysis of Persistent Memory as a Drop-in Replacement for NVMe SSDs DAMON’21, June 20–25, 2021, Virtual Event, China

are improved to utilize maximum PMem bandwidth, a drop-in
replacement will become even more reasonable.

6 RELATEDWORK
In this section, we discuss related work concerning PMem, NVMe
SSDs, and their use in database systems.

PMem Benchmarks. Various performance studies of PMem
modules have been conducted [11, 18, 30, 46, 49]. However, these
papers utilize PMem as a replacement or extension to DRAM, and
do not run typical database-like operations, but highly-tuned bench-
mark functions. These papers show that previous assumptions, e.g.,
PMem is just slower DRAM [2, 29], do not always hold, while
outlining various unique performance characteristics of PMem.

PMem and NVMe for Databases. Recent work on modern-
storage optimized database systems shows the importance of hard-
ware-conscious designs. Leis et al. propose LeanStore [20], a data-
base buffer management design for NVMe storage. Umbra is a
modern in-memory RDBMS built with LeanStore to support larger-
than-DRAM state [27]. A hierarchical DRAM/PMem/SSD buffer
manager was proposed by van Renen et al., to close the gap between
DRAM and SSD performance [43]. Other work presents hybrid
DRAM-PMem key-value store designs and shows the benefit of
incorporating PMem as persistent storage [9, 22].

Storage-aware Database Benchmarks.Wu et al. conduct per-
formance evaluations of PMem and SSDs for the usage in DMBS
using microbenchmarks and TPC-C and TPC-H workloads [47].
While their methodological approach is similar to ours, we con-
duct more nuanced micro-benchmarks that are tailored towards
DBMS use-cases, explore the design space further, and use a more
realistic setup with multiple PMem DIMMs and NVMes. Xu et al.
investigate the TPC-C performance of NVMe SSDs, SATA SSDs,
and HDDs for various systems [48]. Haas et al. maximize the per-
formance of an NVMe array by analyzing the I/O stack in various
microbenchmarks and the TPC-C benchmark [14].

7 CONCLUSION
In this paper, we analyze persistent memory as a drop-in replace-
ment for NVMe SSDs in database workloads. To this end, we run
a set of microbenchmarks as well as the TPC-H benchmark on
Postgres. Our evaluation shows that PMem significantly speeds
up read-intensive workloads by up to 4x in comparison to an NVMe
RAID and up to 11x for a single NVMe. On the other hand, the
speed-up for write-intensive workloads is negligible, unless a stor-
age layer-aware library like libpmem2 is used. Following our results,
we give four practical insights to aid decision-making on when to
use PMem as an SSD drop-in replacement and how to optimize for
it. With the continuing development of PMem and its price stabi-
lization, we expect it to become an increasingly relevant drop-in
replacement of NVMe SSDs.

ACKNOWLEDGMENTS
This work was partially funded by the European Union’s Horizon 2020
research and innovation programme (ref. 957407).

REFERENCES
[1] P. Alcorn. 2019. Intel Optane DIMM Pricing. https://www.tomshardware.

com/news/intel-optane-dimm-pricing-performance,39007.
html Accessed on 2021/03/10.

[2] J. Arulraj, J. Levandoski, U. F. Minhas, and P. Larson. 2018. BzTree: A High-
Performance Latch-Free Range Index for Non-Volatile Memory. Proceedings of
the VLDB Endowment 11, 5 (2018).

[3] J. Axboe. 2021. fio Repository: filesetup.c. https://github.com/
axboe/fio/blob/014ab48afcbcf442464acc7427fcd0f194f64bf4/
filesetup.c Accessed on 2021/03/17.

[4] I.G. Baek, M.S. Lee, S. Sco, M.J. Lee, D.H. Seo, D.-S. Suh, J.C. Park, S.O. Park, H.S.
Kim, I.K. Yoo, U.-I. Chung, and J.T. Moon. 2004. Highly scalable non-volatile
resistive memory using simple binary oxide driven by asymmetric unipolar
voltage pulses. In Proceedings of the 50th IEEE International Electron Devices
Meeting (IEDM).

[5] M. Bjørling, J. Axboe, D. Nellans, and P. Bonnet. 2013. Linux Block IO: Introduc-
ing Multi-Queue SSD Access on Multi-Core Systems. In Proceedings of the 6th
International Systems and Storage Conference (SYSTOR).

[6] F. Chen, B. Hou, and R. Lee. 2016. Internal Parallelism of Flash Memory-Based
Solid-State Drives. ACM Transactions on Storage 12, 3 (2016).

[7] F. Chen, R. Lee, and X. Zhang. 2011. Essential roles of exploiting internal paral-
lelism of flash memory based solid state drives in high-speed data processing.
In Proceedings of the 17th IEEE International Symposium on High Performance
Computer Architecture (HPCA).

[8] Y. Chen, Y. Lu, K. Fang, Q. Wang, and J. Shu. 2020. uTree: A Persistent B+-Tree
with Low Tail Latency. Proceedings of the VLDB Endowment 13, 12 (2020).

[9] Y. Chen, Y. Lu, F. Yang, Q. Wang, Y. Wang, and J. Shu. 2020. FlatStore: An Efficient
Log-Structured Key-Value Storage Engine for Persistent Memory. In Proceedings
of the 25th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS).

[10] C. A. Curino, D. E. Difallah, A. Pavlo, and P. Cudre-Mauroux. 2012. Benchmarking
OLTP/web databases in the cloud: The OLTP-bench framework. In Proceedings of
the 4th International Workshop on Cloud Data Management (CloudDB).

[11] B. Daase, L. J. Bollmeier, L. Benson, and T. Rabl. 2021. Maximizing Persistent
Memory Bandwidth Utilization for OLAP Workloads. In Proceedings of the Inter-
national Conference on Management of Data (SIGMOD).

[12] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudre-Mauroux. 2013. OLTP-Bench:
An extensible testbed for benchmarking relational databases. Proceedings of the
VLDB Endowment 7, 4 (2013).

[13] X. Guo, E. Ipek, and T. Soyata. 2010. Resistive computation: Avoiding the power
wall with low-leakage, STT-MRAM based computing. ACM SIGARCH Computer
Architecture News 38, 3 (2010).

[14] G. Haas, M. Haubenschild, and V. Leis. 2020. Exploiting Directly-Attached NVMe
Arrays in DBMS. In Proceedings of the 10th Conference on Innovative Data Systems
Research (CIDR).

[15] J. Hruska. 2021. How Do SSDs Work? https://www.extremetech.com/
extreme/210492-extremetech-explains-how-do-ssds-work Ac-
cessed on 2021/03/14.

[16] A. Huffman. 2012. NVM Express. https://www.nvmexpress.org/wp-
content/uploads/NVM-Express-1_1.pdf

[17] Intel. 2021. Intel® SSD DC P4610 Series. https://ark.intel.
com/content/www/us/en/ark/products/140103/intel-ssd-dc-
p4610-series-1-6tb-2-5in-pcie-3-1-x4-3d2-tlc.html Accessed
on 2021/03/10.

[18] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J. Soh, Z. Wang, Y.
Xu, S. R. Dulloor, J. Zhao, and S. Swanson. 2019. Basic PerformanceMeasurements
of the Intel Optane DC Persistent Memory Module. CoRR abs/1903.05714 (2019).

[19] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. 2009. Architecting phase change mem-
ory as a scalable dram alternative. In Proceedings of the 36th Annual International
Symposium on Computer Architecture (ISCA).

[20] V. Leis, M. Haubenschild, A. Kemper, and T. Neumann. 2018. LeanStore: In-
Memory Data Management beyond Main Memory. In Proceedings of the 34th
IEEE International Conference on Data Engineering (ICDE).

[21] L. Lersch, X. Hao, I. Oukid, T. Wang, and T. Willhalm. 2019. Evaluating persistent
memory range indexes. Proceedings of the VLDB Endowment 13, 4 (2019).

[22] L. Lersch, I. Schreter, I. Oukid, and W. Lehner. 2020. Enabling low tail latency on
multicore key-value stores. Proceedings of the VLDB Endowment 13, 7 (2020).

[23] J. Liu, S. Chen, and L. Wang. 2020. LB+Trees: Optimizing Persistent Index
Performance on 3DXPoint Memory. Proceedings of the VLDB Endowment 13, 7
(2020).

[24] Z. Liu. 2018. Fujitsu Targets 2019 for NRAM Mass Production.
https://www.tomshardware.com/news/fujitsu-nram-nantero-
carbon-nanotube,37437.html Accessed on 2021/03/20.

[25] B. Lu, X. Hao, T. Wang, and E. Lo. 2020. Dash: Scalable Hashing on Persistent
Memory. Proceedings of the VLDB Endowment 13, 10 (2020).

[26] Nantero. 2021. Nantero Website. https://www.https://nantero.com/
Accessed on 2021/03/10.

https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://www.tomshardware.com/news/intel-optane-dimm-pricing-performance,39007.html
https://github.com/axboe/fio/blob/014ab48afcbcf442464acc7427fcd0f194f64bf4/filesetup.c
https://github.com/axboe/fio/blob/014ab48afcbcf442464acc7427fcd0f194f64bf4/filesetup.c
https://github.com/axboe/fio/blob/014ab48afcbcf442464acc7427fcd0f194f64bf4/filesetup.c
https://www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work
https://www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work
https://www.nvmexpress.org/wp-content/uploads/NVM-Express-1_1.pdf
https://www.nvmexpress.org/wp-content/uploads/NVM-Express-1_1.pdf
https://ark.intel.com/content/www/us/en/ark/products/140103/intel-ssd-dc-p4610-series-1-6tb-2-5in-pcie-3-1-x4-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/140103/intel-ssd-dc-p4610-series-1-6tb-2-5in-pcie-3-1-x4-3d2-tlc.html
https://ark.intel.com/content/www/us/en/ark/products/140103/intel-ssd-dc-p4610-series-1-6tb-2-5in-pcie-3-1-x4-3d2-tlc.html
https://www.tomshardware.com/news/fujitsu-nram-nantero-carbon-nanotube,37437.html
https://www.tomshardware.com/news/fujitsu-nram-nantero-carbon-nanotube,37437.html
https://www.https://nantero.com/

DAMON’21, June 20–25, 2021, Virtual Event, China Maximilian Böther, Otto Kißig, Lawrence Benson, Tilmann Rabl

[27] T. Neumann and M. J. Freitag. 2020. Umbra: A Disk-Based System with In-
Memory Performance. In Proceedings of the 10th Conference on Innovative Data
Systems Research (CIDR).

[28] NVM-Express. 2012. NVM Express Explained. https://nvmexpress.
org/wp-content/uploads/2013/04/NVM_whitepaper.pdf Accessed
on 2021/03/10.

[29] I. Oukid, J. Lasperas, A. Nica, T. Willhalm, and W. Lehner. 2016. FPTree: A Hybrid
SCM-DRAM Persistent and Concurrent B-Tree for Storage Class Memory. In
Proceedings of the International Conference on Management of Data (SIGMOD).

[30] I. B. Peng, M. B. Gokhale, and E. W. Green. 2019. System Evaluation of the Intel
Optane byte-addressable NVM. In Proceedings of the International Symposium on
Memory Systems (MEMSYS).

[31] Persistent Memory Knowledge Base. 2020. Why msync() is less optimal for
persistent memory. https://kb.pmem.io/development/100000025-
Why-msync-is-less-optimal-for-persistent-memory/ Accessed
on 2021/03/22.

[32] PMDK Team. 2021. Persistent Memory Development Kit. https://pmem.io/
pmdk/ Accessed on 2021/03/18.

[33] Postgres. 2021. Postgres Docs: WAL Configuration. https://www.
postgresql.org/docs/9.5/wal-configuration.html Accessed on
2021/03/25.

[34] Postgres. 2021. Postgres Docs: WAL Internals. https://www.postgresql.
org/docs/current/wal-internals.html Accessed on 2021/03/18.

[35] Postgres. 2021. Postgres Repository: Buffer Readme.
https://github.com/postgres/postgres/blob/
15639d5e8f6f278219681fec8a5668a92fb7e874/src/backend/
storage/buffer/README#L218-L230 Accessed on 2021/03/16.

[36] M. K. Qureshi, V. Srinivasan, and J. A. Rivers. 2009. Scalable high performance
main memory system using phase-change memory technology. In Proceedings of
the 36th Annual International Symposium on Computer Architecture (ISCA).

[37] SQLite. 2021. SQLite Docs: Write-Ahead Logging. https://sqlite.org/
wal.html Accessed on 2021/03/25.

[38] S. Suryawanshi. 2019. Comprehensive guide on how to tune database param-
eters and configuration in PostgreSQL. https://www.enterprisedb.
com/postgres-tutorials/comprehensive-guide-how-tune-
database-parameters-and-configuration-postgresql Accessed

on 2021/03/22.
[39] H. Suzuki. 2020. The Internals of Postgres (Chapter 9 - Write Ahead Logging).

https://www.interdb.jp/pg/pgsql09.html
[40] T. Swatz. 2020. Optimize PostgreSQL Server Performance Through Con-

figuration. https://blog.crunchydata.com/blog/optimize-
postgresql-server-performance Accessed on 2021/03/22.

[41] L. Torvalds. 2000. Re: mmap/mlock performance versus read [linux-kernelmailing
list]. https://marc.info/?l=linux-kernel&m=95496636207616&
w=2 Accessed on 2021/03/25.

[42] Transaction Processing Performance Council (TPC). 1993. TPC Benchmark H
(TPC-H) - Standard Specification.

[43] A. van Renen, V. Leis, A. Kemper, T. Neumann, T. Hashida, K. Oe, Y. Doi, L.
Harada, and M. Sato. 2018. Managing Non-Volatile Memory in Database Systems.
In Proceedings of the International Conference on Management of Data (SIGMOD).

[44] A. van Renen, L. Vogel, V. Leis, T. Neumann, and A. Kemper. 2020. Building
blocks for persistent memory. The VLDB Journal 29, 6 (2020).

[45] A. Vasiliev. 2021. PGTune. https://pgtune.leopard.in.ua/#/
[46] M. Weiland, H. Brunst, T. Quintino, N. Johnson, O. Iffrig, S. Smart, C. Herold, A.

Bonanni, A. Jackson, and M. Parsons. 2019. An early Evaluation of Intel's Optane
DC Persistent Memory Module and its Impact on High-Performance Scientific
Applications. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC).

[47] Y. Wu, K. Park, R. Sen, B. Kroth, and J. Do. 2020. Lessons Learned from the
Early Performance Evaluation of Intel Optane DC Persistent Memory in DBMS.
In Proceedings of the 16th International Workshop on Data Management on New
Hardware (DaMoN).

[48] Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz, A. Shayesteh, and V.
Balakrishnan. 2015. Performance analysis of NVMe SSDs and their implication
on real world databases. In Proceedings of the 8th ACM International Systems and
Storage Conference.

[49] J. Yang, J. Kim, M. Hoseinzadeh, J. Izraelevitz, and S. Swanson. 2020. An Empirical
Guide to the Behavior and Use of Scalable Persistent Memory. In Proceedings of
the 18th USENIX Conference on File and Storage Technologies (FAST).

[50] P. Zhou, B. Zhao, J. Yang, and Y. Zhang. 2009. A durable and energy efficient
main memory using phase change memory technology. In Proceedings of the 36th
Annual International Symposium on Computer Architecture (ISCA).

https://nvmexpress.org/wp-content/uploads/2013/04/NVM_whitepaper.pdf
https://nvmexpress.org/wp-content/uploads/2013/04/NVM_whitepaper.pdf
https://kb.pmem.io/development/100000025-Why-msync-is-less-optimal-for-persistent-memory/
https://kb.pmem.io/development/100000025-Why-msync-is-less-optimal-for-persistent-memory/
https://pmem.io/pmdk/
https://pmem.io/pmdk/
https://www.postgresql.org/docs/9.5/wal-configuration.html
https://www.postgresql.org/docs/9.5/wal-configuration.html
https://www.postgresql.org/docs/current/wal-internals.html
https://www.postgresql.org/docs/current/wal-internals.html
https://github.com/postgres/postgres/blob/15639d5e8f6f278219681fec8a5668a92fb7e874/src/backend/storage/buffer/README#L218-L230
https://github.com/postgres/postgres/blob/15639d5e8f6f278219681fec8a5668a92fb7e874/src/backend/storage/buffer/README#L218-L230
https://github.com/postgres/postgres/blob/15639d5e8f6f278219681fec8a5668a92fb7e874/src/backend/storage/buffer/README#L218-L230
https://sqlite.org/wal.html
https://sqlite.org/wal.html
https://www.enterprisedb.com/postgres-tutorials/comprehensive-guide-how-tune-database-parameters-and-configuration-postgresql
https://www.enterprisedb.com/postgres-tutorials/comprehensive-guide-how-tune-database-parameters-and-configuration-postgresql
https://www.enterprisedb.com/postgres-tutorials/comprehensive-guide-how-tune-database-parameters-and-configuration-postgresql
https://www.interdb.jp/pg/pgsql09.html
https://blog.crunchydata.com/blog/optimize-postgresql-server-performance
https://blog.crunchydata.com/blog/optimize-postgresql-server-performance
https://marc.info/?l=linux-kernel&m=95496636207616&w=2
https://marc.info/?l=linux-kernel&m=95496636207616&w=2
https://pgtune.leopard.in.ua/#/

	Abstract
	1 Introduction
	2 Background
	2.1 Persistent Memory
	2.2 NVMe SSDs

	3 Workload Microbenchmarks
	3.1 Setup and Methodology
	3.2 Hardware Comparison
	3.3 Table Scan
	3.4 Buffer Management
	3.5 Logging

	4 TPC-H Benchmark
	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

