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Abstract. In language learning in the limit, the most common type of hypothesis
is to give an enumerator for a language, a W -index. These hypotheses have the
drawback that even the membership problem is undecidable. In this paper, we
use a different system which allows for naming arbitrary decidable languages,
namely programs for characteristic functions (called C-indices). These indices
have the drawback that it is now not decidable whether a given hypothesis is even
a legal C-index.
In this first analysis of learning with C-indices, we give a structured account
of the learning power of various restrictions employing C-indices, also when
compared withW -indices. We establish a hierarchy of learning power depending
on whether C-indices are required (a) on all outputs; (b) only on outputs relevant
for the class to be learned or (c) only in the limit as final, correct hypotheses. We
analyze all these questions also in relation to the mode of data presentation.
Finally, we also ask about the relation of semantic versus syntactic convergence
and derive the map of pairwise relations for these two kinds of convergence cou-
pled with various forms of data presentation.

1 Introduction

We are interested in the problem of algorithmically learning a description for a formal
language (a computably enumerable subset of the set of natural numbers) when pre-
sented successively all and only the elements of that language; this is called inductive
inference, a branch of (algorithmic) learning theory. For example, a learner h might be
presented more and more even numbers. After each new number, h outputs a descrip-
tion for a language as its conjecture. The learner hmight decide to output a program for
the set of all multiples of 4, as long as all numbers presented are divisible by 4. Later,
when h sees an even number not divisible by 4, it might change this guess to a program
for the set of all multiples of 2.

Many criteria for determining whether a learner h is successful on a language L
have been proposed in the literature. Gold, in his seminal paper [10], gave a first, simple
learning criterion, TxtGEx-learning3, where a learner is successful if and only if, on
? This work was supported by DFG Grant Number KO 4635/1-1.
3 Txt stands for learning from a text of positive examples; G for Gold, indicating full-

information learning; Ex stands for explanatory.
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every text for L (listing of all and only the elements of L) it eventually stops changing
its conjectures, and its final conjecture is a correct description for the input language.

Trivially, each single, describable language L has a suitable constant function as
a TxtGEx-learner (this learner constantly outputs a description for L). Thus, we are
interested in analyzing for which classes of languages L is there a single learner h
learning each member of L. This framework is also known as language learning in the
limit and has been studied extensively, using a wide range of learning criteria similar to
TxtGEx-learning (see, for example, the textbook [11]).

In this paper, we put the focus on the possible descriptions for languages. Any com-
putably enumerable language L has as possible descriptions any program enumerating
all and only the elements of L, called a W -index (the language enumerated by program
e is denoted by We). This system has various drawbacks; most importantly, the func-
tion which decides, given e and x, whether x ∈ We is not computable. We propose
to use different descriptors for languages: programs for characteristic functions (where
such programs e describe the language Ce which it decides). Of course, only decid-
able languages have such a description, but now, given a program e for a characteristic
function, x ∈ Ce is decidable. Additionally to many questions that remain undecidable
(for example, whether C-indices are for the same language or whether a C-index is for
a finite language), it is not decidable whether a program e is indeed a program for a
characteristic function. This leads to a new set of problems: Learners cannot be (algo-
rithmically) checked whether their outputs are viable (in the sense of being programs
for characteristic functions).

Based on this last observation, we study a range of different criteria which formalize
what kind of behavior we expect from our learners. In the most relaxed setting, learners
may output any number (for a program) they want, but in order to Ex-learn, they need
to converge to a correct C-index; we denote this restriction with ExC . Requiring addi-
tionally to only use C-indices in order to successfully learn, we denote by CIndExC ;
requiring C-indices on all inputs (not just for successful learning, but also when seeing
input from no target language whatsoever) we denote by τ(CInd)ExC . In particular,
the last restriction requires the learner to be total; in order to distinguish whether the
loss of learning power is due to the totality restriction or truly due to the additional re-
quirement of outputting C-indices, we also studyRCIndExC , that is, the requirement
CIndExC where additionally the learner is required to be total.

We note that τ(CInd)ExC is similar to learning indexable families. Indexable fam-
ilies are classes of languages L such that there is an enumeration (Li)i∈N of all and only
the elements of L for which the decision problem “x ∈ Li” is decidable. Already for
such classes of languages, we get a rich structure (see a survey of previous work [16]).
For a learner h learning according to τ(CInd)ExC , we have that Lx = Ch(x) gives an
indexing of a family of languages, and h learns some subset thereof. We are specifically
interested in the area between this setting and learning with W -indices (ExW ).

The criteria we analyze naturally interpolate between these two settings. We show
that we have the following hierarchy: τ(CInd)ExC allows for learning strictly fewer
classes of languages than RCIndExC , which allow for learning the same classes as
CIndExC , which again are fewer than learnable by ExC , which in turn renders fewer
classes learnable than ExW .
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Fig. 1: Relation of (a) various requirements when to output characteristic indices and (b)
various learning criteria, both paired with various memory restrictions β. Black solid
respectively dashed lines imply trivial respectively non-trivial inclusions (bottom-to-
top, left-to-right). Furthermore, greyly edged areas illustrate a collapse of the enclosed
learning criteria and there are no further collapses.

All these results hold for learning with full information. In order to study the de-
pendence on the mode of information presentation, we also consider partially set-driven
learners (Psd, [2,19]), which only get the set of data presented so far and the iteration
number as input; set-driven learners (Sd, [20]), which get only the set of data presented
so far; iterative learners (It, [21,8]), which only get the new datum and their current
hypothesis and, finally, transductive learners (Td, [4,15]), which only get the current
data. Note that transductive learners are mostly of interest as a proper restriction to all
other modes of information presentation. In particular, we show that full-information
learners can be turned into partially set-driven learners without loss of learning power
and iterative learning is strictly less powerful than set-driven learning, in all settings.

Altogether we analyze 25 different criteria and show how each pair relates. All these
results are summarized in Figure 1(a) as one big map stating all pairwise relations of
the learning criteria mentioned, giving 300 pairwise relations in one diagram, proven
with 13 theorems in Section 3. Note that the results comparing learning criteria with
W -indices were previously known, and some proofs could be extended to also cover
learning withC-indices. For the proofs, please consider the full version of this paper [1].

In Section 4, we derive a similar map considering a possible relaxation on ExC-
learning: While ExC requires syntactic convergence to one single correct C-index,
we consider behaviorally correct learning (BcC , [6,17]) where the learner only has to
semantically converge to correct C-indices (but may use infinitely many different such
indices). We again consider the different modes of data presentation and determine all
pairwise relations in Figure 1(b). The proofs are again deferred to the full version [1].
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2 Preliminaries

2.1 Mathematical Notations and Learning Criteria

In this section, we discuss the used notation as well as the system for learning crite-
ria [15] we follow. Unintroduced notation follows the textbook [18].

With N we denote the set of all natural numbers, namely {0, 1, 2, . . .}. We denote
the subset and proper subset relation between two sets with ⊆ and (, respectively. We
use ∅ and ε to denote the empty set and empty sequence, respectively. The set of all
computable functions is denoted by P , the subset of all total computable functions by
R. If a function f is (not) defined on some argument x ∈ N, we say that f converges
(diverges) on x, denoting this fact with f(x)↓ (f(x)↑). We fix an effective numbering
{ϕe}e∈N of P . For any e ∈ N, we let We denote the domain of ϕe and call e a W -index
of We. This set we call the e-th computably enumerable set. We call e ∈ N a C-index
(characteristic index) if and only if ϕe is a total function such that for all x ∈ N we have
ϕe(x) ∈ {0, 1}. Furthermore, we let Ce = {x ∈ N | ϕe(x) = 1}. For a computably
enumerable set L, if some e ∈ N is a C-Index with Ce = L, we write ϕe = χL. Note
that, if a set has a C-index, it is recursive. The set of all recursive sets is denoted by
REC. For a finite set D ⊆ N, we let ind(D) be a C-index for D. Note that ind ∈ R.
Furthermore, we fix a Blum complexity measure Φ associated with ϕ, that is, for all
e, x ∈ N, Φe(x) is the number of steps the function ϕe takes on input x to converge [3].
The padding function pad ∈ R is an injective function such that, for all e, n ∈ N, we
have ϕe = ϕ

pad(e,n)
. We use 〈·, ·〉 as a computable, bijective function that codes a pair of

natural numbers into a single one. We use π1 and π2 as computable decoding functions
for the first and section component, i.e., for all x, y ∈ N we have π1(〈x, y〉) = x and
π2(〈x, y〉) = y.

We learn computably enumerable sets L, called languages. We fix a pause symbol
#, and let, for any set S, S# := S ∪ {#}. Information about languages is given from
text, that is, total functions T : N → N ∪ {#}. A text T is of a certain language L
if its content is exactly L, that is, content(T ) := range(T ) \ {#} is exactly L. We
denote the set of all texts as Txt and the set of all texts of a language L as Txt(L).
For any n ∈ N, we denote with T [n] the initial sequence of the text T of length n, that
is, T [0] := ε and T [n] := (T (0), . . . , T (n − 1)). Given a language L and t ∈ N, the
set of sequences consisting of elements of L ∪ {#} that are at most t long is denoted
by L≤t# . Furthermore, we denote with Seq all finite sequences over N# and define the
content of such sequences analogous to the content of texts. The concatenation of two
sequences σ, τ ∈ Seq is denoted by στ or, more emphasizing, σ_τ . Furthermore, we
write ⊆ for the extension relation on sequences and fix a order ≤ on Seq interpreted as
natural numbers.

Now, we formalize learning criteria using the following system [15]. A learner is a
partial function h ∈ P . An interaction operator β is an operator that takes a learner h ∈
P and a text T ∈ Txt as input and outputs a (possibly partial) function p. Intuitively,
β defines which information is available to the learner for making its hypothesis. We
consider Gold-style or full-information learning [10], denoted by G, partially set-driven
learning (Psd, [2,19]), set-driven learning (Sd, [20]), iterative learning (It, [21,8]) and
transductive learning (Td, [4,15]). To define the latter formally, we introduce a symbol
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“?” for the learner to signalize that the information given is insufficient. Formally, for
all learners h ∈ P , texts T ∈ Txt and all i ∈ N, define

G(h, T )(i) = h(T [i]);

Psd(h, T )(i) = h(content(T [i]), i);

Sd(h, T )(i) = h(content(T [i]));

It(h, T )(i) =

{
h(ε), if i = 0;

h(It(h, T )(i− 1), T (i− 1)), otherwise;

Td(h, T )(i) =


?, if i = 0;

Td(h, T )(i− 1), else, if h(T (i− 1)) = ?;

h(T (i− 1)), otherwise.

For any of the named interaction operators β, given a β-learner h, we let h∗ (the
starred learner) denote a G-learner simulating h, i.e., for all T ∈ Txt, we have
β(h, T ) = G(h∗, T ). For example, let h be a Sd-learner. Then, intuitively, h∗ ignores
all information but the content of the input, simulating h with this information, i.e., for
all finite sequences σ, we have h∗(σ) = h(content(σ)).

For a learner to successfully identify a language, we may oppose constraints on
the hypotheses the learner makes. These are called learning restrictions. As a first,
famous example, we required the learner to be explanatory [10], i.e., the learner must
converge to a single, correct hypothesis for the target language. We hereby distinguish
whether the final hypothesis is interpreted as aC-index (ExC) or as aW -index (ExW ).
Formally, for any sequence of hypotheses p and text T ∈ Txt, we have

ExC(p, T )⇔ ∃n0 : ∀n ≥ n0 : p(n) = p(n0) ∧ ϕp(n0) = χcontent(T );

ExW (p, T )⇔ ∃n0 : ∀n ≥ n0 : p(n) = p(n0) ∧Wp(n0) = content(T ).

We say that explanatory learning requires syntactic convergence. If there exists a C-
index (or W -index) for a language, then there exist infinitely many. This motivates to
not require syntactic but only semantic convergence, i.e., the learner may make mind
changes, but it has to, eventually, only output correct hypotheses. This is called be-
haviorally correct learning (BcC or BcW , [6,17]). Formally, let p be a sequence of
hypotheses and let T ∈ Txt, then

BcC(p, T )⇔ ∃n0 : ∀n ≥ n0 : ϕp(n) = χcontent(T );

BcW (p, T )⇔ ∃n0 : ∀n ≥ n0 : Wp(n) = content(T ).

In this paper, we consider learning with C-indices. It is, thus, natural to require the
hypotheses to consist solely of C-indices, called C-index learning, and denoted by
CInd. Formally, for a sequence of hypotheses p and a text T , we have

CInd(p, T )⇔ ∀i, x : ϕp(i)(x) ∈ {0, 1} .

For two learning restrictions δ and δ′, their combination is their intersection, denoted
by their juxtaposition δδ′. We let T denote the learning restriction that is always true,
which is interpreted as the absence of a learning restriction.
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A learning criterion is a tuple (α, C, β, δ), where C is the set of admissible learners,
usually P or R, β is an interaction operator and α and δ are learning restrictions. We
denote this criterion with τ(α)CTxtβδ, omitting C if C = P , and a learning restriction
if it equals T. We say that an admissible learner h ∈ C τ(α)CTxtβδ-learns a language
L if and only if, for arbitrary texts T ∈ Txt, we have α(β(h, T ), T ) and for all texts
T ∈ Txt(L) we have δ(β(h, T ), T ). The set of languages τ(α)CTxtβδ-learned by
h ∈ C is denoted by τ(α)CTxtβδ(h). With [τ(α)CTxtβδ] we denote the set of all
classes τ(α)CTxtβδ-learnable by some learner in C. Moreover, to compare learning
with W - and C-indices, these classes may only contain recursive languages, which we
denote as [τ(α)CTxtβδ]REC.

2.2 Normal Forms

When studying language learning in the limit, there are certain properties of learner that
are useful, e.g., if we can assume a learner to be total. Cases where learners may be as-
sumed total have been studied in the literature [13,14]. Importantly, this is the case for
explanatory Gold-style learners obeying delayable learning restrictions and for behav-
iorally correct learners obeying delayable restrictions. Intuitively, a learning restriction
is delayable if it allows hypotheses to be arbitrarily, but not indefinitely postponed with-
out violating the restriction. Formally, a learning restriction δ is delayable, if and only
if for all non-decreasing, unbounded functions r : N → N, texts T, T ′ ∈ Txt and
learning sequences p such that for all n ∈ N, content(T [r(n)]) ⊆ content(T ′[n]) and
content(T ) = content(T ′), we have, if δ(p, T ), then also δ(p ◦ r, T ′). Note that ExW ,
ExC , BcW , BcC and CInd are delayable restrictions.

Another useful notion are locking sequences. Intuitively, these contain enough in-
formation such that a learner, after seeing this information, converges correctly and does
not change its mind anymore whatever additional information from the target language
it is given. Formally, let L be a language and let σ ∈ L∗#. Given a G-learner h ∈ P ,
σ is a locking sequence for h on L if and only if for all sequences τ ∈ L∗# we have
h(σ) = h(στ) and h(σ) is a correct hypothesis for L [2]. This concept can immedi-
ately be transferred to other interaction operators. Exemplary, given a Sd-learner h and
a locking sequence σ of the starred learner h∗, we call the set content(σ) a locking
set. Analogously, one transfers this definition to the other interaction operators. It shall
not remain unmentioned that, when considering Psd-learners, we speak of locking in-
formation. In the case of BcW -learning we do not require the learner to syntactically
converge. Therefore, we call a sequence σ ∈ L∗# a BcW -locking sequence for a G-
learner h on L if, for all sequences τ ∈ L∗#, h(στ) is a correct hypothesis for L [11].
We omit the transfer to other interaction operators as it is immediate. It is an important
observation that for any learner h and any language L it learns, there exists a (BcW -)
locking sequence [2]. These notions and results directly transfer to ExC- and BcC-
learning. When it is clear from the context, we omit the index.

3 Requiring C-Indices as Output

This section is dedicated to proving Figure 1(a), giving all pairwise relations for the dif-
ferent settings of requiring C-indices for output in the various mentioned modes of data
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presentation. In general, we observe that the later we require C-indices, the more learn-
ing power the learner has. This holds except for transductive learners which converge
to C-indices. We show that they are as powerful as CInd-transductive learners.

Although we learn classes of recursive languages, the requirement to converge to
characteristic indices does heavily limit a learners capabilities. In the next theorem we
show that even transductive learners which converge to W -indices can learn classes
of languages which no Gold-style ExC-learner can learn. We exploit the fact that C-
indices, even if only conjectured eventually, must contain both positive and negative
information about the guess.

Theorem 1. We have that [TxtTdExW ]REC \ [TxtGExC ]REC 6= ∅.

Proof. We show this by using the Operator Recursion Theorem (ORT) to provide a
separating class of languages. To this end, let h be the Td-learner with h(#) = ? and,
for all x, y ∈ N, let h(〈x, y〉) = x. Let L = TxtTdExW (h) ∩ REC. Assume L can
be learned by a TxtGExC-learner h′. We may assume h′ ∈ R [13]. Then, by ORT
there exist indices e, p, q ∈ N such that

L := We = range(ϕp);

∀x : T̃ (x) := ϕp(x) = 〈e, ϕq(T̃ [x])〉;
ϕq(ε) = 0;

∀σ 6= ε : σ̄ = min{σ′ ⊆ σ | ϕq(σ′) = ϕq(σ)};

∀σ 6= ε : ϕq(σ) =


ϕq(σ̄), if ∀σ′, σ̄ ⊆ σ′ ⊆ σ : Φh′(σ′)(〈e, ϕq(σ̄) + 1〉) > |σ|;
ϕq(σ̄) + 1, else, for min. σ′ contradicting the previous case, if

ϕh′(σ′)(〈e, ϕq(σ̄) + 1〉) = 0;

ϕq(σ̄) + 2, otherwise.

Here, Φ is a Blum complexity measure [3]. Intuitively, to define the next ϕp(x), we add
the same element to content(T̃ ) until we know whether 〈e, T̃ [x] + 1〉 ∈ Ch′(σ̄) holds
or not. Then, we add the element contradicting this outcome.

We first show that L ∈ L and afterwards that L cannot be learned by h′. To show
the former, note that either L is finite or T̃ is a non-decreasing unbounded computable
enumeration of L. Therefore, we have L ∈ REC. We now prove that h learns L. Let
T ∈ Txt(L). For all n ∈ N where T (n) is not the pause symbol, we have h(T (n)) =
e. With n0 ∈ N being minimal such that T (n0) 6= #, we get for all n ≥ n0 that
Td(h, T )(n) = e. As e is a correct hypothesis, h learns L from T and thus we have
that L ∈ TxtTdExW (h). Altogether, we get that L ∈ L.

By assumption, h′ learns L from the text T̃ ∈ Txt(L). Therefore, there exists
n0 ∈ N such that, for all n ≥ n0,

h′(T̃ [n]) = h′(T̃ [n0]) and χL = ϕh′(T̃ [n]),

that is, h′(T̃ [n]) is a C-index for L. Now, as h′ outputs C-indices when converging,
there are t, t′ ≥ n0 such that

Φh′(T̃ [t′])(〈e, ϕq(T̃ [n0]) + 1〉) ≤ t.
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Let t′0 and t0 be the first such found. We show that h′(T̃ [t′0]) is no correct hypothesis of
L by distinguishing the following cases.

1. Case: ϕh′(T̃ [t′0])(〈e, ϕq(T̃ [n0]) + 1〉) = 0. By definition of ϕq and by minimality of

t′0, we have that 〈e, ϕq(T̃ [n0]) + 1〉 ∈ L, however, the hypothesis of h′(T̃ [t′0]) says
differently, a contradiction.

2. Case: ϕh′(T̃ [t′0])(〈e, ϕq(T̃ [n0]) + 1〉) = 1. By definition of ϕq and by minimality of

t′0, we have that 〈e, ϕq(T̃ [n0]) + 1〉 ∈ L, but 〈e, ϕq(T̃ [n0]) + 1〉 /∈ L. However, the
hypothesis of h′(T̃ [t′0]) conjectures the latter to be in L, a contradiction. ut

Furthermore, the following known equalities from learning W -indices directly ap-
ply in the studied setting as well.

Theorem 2 ([12], [19,9]). We have that

[TxtItExW ]REC ⊆ [TxtSdExW ]REC,

[TxtPsdExW ]REC = [TxtGExW ]REC.

The remaining separations we will show in a more general way, see Theorems 11
and 12. We generalize the latter result [19,9], namely that Gold-style learners may be
assumed partially set-driven, to all considered cases. The idea here is to, just as in
the ExW -case, mimic the given learner and to search for minimal locking sequences.
Incorporating the result that unrestricted Gold-style learners may be assumed total [13],
we even get a stronger result.

Theorem 3. For δ, δ′ ∈ {CInd,T}, we have that

[τ(δ)TxtGδ′ExC ]REC = [τ(δ)RTxtPsdδ′ExC ]REC.

We also generalize the former result of Theorem 2 to hold in all considered cases.
The same simulating argument (where one mimics the iterative learner on ascending
text with a pause symbol between two elements) suffices regardless the exact setting.

Theorem 4. Let δ, δ′ ∈ {CInd,T} and C ∈ {R,P}. Then, we have that

[τ(δ′)CTxtItδExC ]REC ⊆ [τ(δ′)CTxtSdδExC ]REC.

Interestingly, totality is not restrictive solely for Gold-style (and due to the equal-
ity also partially set-driven) learners. For the other considered learners with restricted
memory, being total lessens the learning capabilities. This weakness results from the
need to output some guess. A partial learner can await this guess and outperform it. This
way, we obtain self-learning languages [5] to show the three following separations.

Theorem 5. We have that [RTxtSdCIndExC ]REC ( [TxtSdCIndExC ]REC.

Theorem 6. We have that [RTxtItCIndExC ]REC ( [TxtItCIndExC ]REC.

Theorem 7. We have that [RTxtTdCIndExC ]REC ( [TxtTdCIndExC ]REC.
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Next, we show the gradual decrease of learning power the more we require the
learners to output characteristic indices. We have already seen in Theorem 1 that con-
verging to C-indices lessens learning power. However, this allows for more learning
power than outputting these indices during the whole learning process as shows the
next theorem. The idea is that such learners have to be certain about their guesses as
these are indices of characteristic functions. When constructing a separating class using
self-learning languages [5], one forces the CInd-learner to output C-indices on cer-
tain languages to, then, contradict its choice there. This way, the ExC-learner learns
languages the CInd-learner cannot.

Theorem 8. We have that [TxtItExC ]REC \ [TxtGCIndBcC ]REC 6= ∅.

Since languages which can be learned by iterative learners can also be learned by
set-driven ones (see Theorem 4), this result suffices. Note that the idea above requires
some knowledge on previous elements. Thus, it is no coincidence that this separation
does not include transductive learners. Since these learners base their guesses on single
elements, they cannot see how far in the learning process they are. Thus, they are forced
to always output C-indices.

Theorem 9. We have that [TxtTdCIndExC ]REC = [TxtTdExC ]REC.

For the remainder of this section, we focus on learners which output characteristic
indices on arbitrary input, that is, we focus on τ(CInd)-learners. First, we show that
the requirement of always outputting C-indices lessens a learners learning power, even
when compared to total CInd-learners. To provide the separating class of self-learning
languages, one again awaits the τ(CInd)-learner’s decision and then, based on these,
learns languages this learner cannot.

Theorem 10. We have [RTxtTdCIndExC ]REC \ [τ(CInd)TxtGBcC ]REC 6= ∅.

Proof. We prove the result by providing a separating class of languages. Let h be the
Td-learner with h(#) = ? and, for all x, y ∈ N, let h(〈x, y〉) = x. By construction,
h is total and computable. Let L = RTxtTdCIndExC(h) ∩ REC. We show that
there is no τ(CInd)TxtGBcC-learner learning L by way of contradiction. Assume
there is a τ(CInd)TxtGBcC-learner h′ which learns L. With the Operator Recursion
Theorem (ORT), there are e, p ∈ N such that for all x ∈ N

L := range(ϕp);

ϕe = χL;

T̃ (x) := ϕp(x) =

{
〈e, 2x〉, if ϕh′(ϕp[x])(〈e, 2x〉) = 0;

〈e, 2x+ 1〉, otherwise.

Intuitively, for all x either ϕp(x) is an element of L if it is not in the hypothesis of h′

after seeing ϕp[x], or there is an element in this hypothesis that is not in content(T̃ ).
As any hypothesis of h′ is a C-index, we have that ϕp ∈ R and, as ϕp is strictly
monotonically increasing, that L is decidable.
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We now prove that L ∈ L and afterwards that L cannot be learned by h′. First, we
need to prove that h learns L. Let T ∈ Txt(L). For all n ∈ N where T (n) is not the
pause symbol, we have h(T (n)) = e. Let n0 ∈ N with T (n0) 6= #. Then, we have, for
all n ≥ n0, that Td(h, T )(n) = e and, since e is a hypothesis of L, h learns L from T .
Thus, we have that L ∈ RTxtTdCIndExC(h) ∩ REC.

By assumption, h′ learns L and thus it also needs to learn L on text T̃ . Hence, there
is x0 such that for all x ≥ x0 the hypothesis h′(T̃ [x]) = h′(ϕp[x]) is a C-index for L.
We now consider the following cases.

1. Case: ϕh′(ϕp[x])(〈e, 2x〉) = 0. By construction, we have that T̃ (x) = 〈e, 2x〉. There-
fore, 〈e, 2x〉 ∈ L, which contradicts h′(ϕp[x]) being a correct hypothesis.

2. Case: ϕh′(ϕp[x])(〈e, 2x〉) = 1. By construction, we have that T̃ (x) 6= 〈e, 2x〉 and
thus, because T̃ is strictly monotonically increasing, 〈e, 2x〉 /∈ L = content(T̃ ).
This, again, contradicts h′(ϕp[x]) being a correct hypothesis.

As in all cases h′(ϕp[x]) is a wrong hypothesis, h′ cannot learn L. ut

It remains to be shown that memory restrictions are severe for such learners as well.
First, we show that partially set-driven learners are more powerful than set-driven ones.
Just as originally witnessed by for W -indices [19,9], this is solely due to the lack of
learning time. In the following theorem, we already separate from behaviorally correct
learners, as we will need this stronger version later on.

Theorem 11. We have that [τ(CInd)TxtPsdExC ]REC \ [TxtSdBcW ]REC 6= ∅.

In turn, this lack of time is not as severe as lack of memory. The standard class
(of recursive languages) to separate set-driven learners from iterative ones [11] can be
transferred to the setting studied in this paper.

Theorem 12. We have that [τ(CInd)TxtSdExC ]REC \ [TxtItExW ]REC 6= ∅.

Lastly, we show that transductive learners, having basically no memory, do severely
lack learning power. As they have to infer their conjectures from single elements they,
in fact, cannot even learn basic classes such as {{0}, {1}, {0, 1}}. The following result
concludes the map shown in Figure 1(a) and, therefore, also this section.

Theorem 13. For β ∈ {It,Sd}, we have that

[τ(CInd)TxtβExC ]REC \ [TxtTdExW ]REC 6= ∅.

4 Syntactic versus Semantic Convergence to C-indices

In this section, we investigate the effects on learners when we require them to converge
to characteristic indices. We study both syntactically converging learners as well as
semantically converging ones. In particular, we compare learners imposed with different
well-studied memory restrictions.

Surprisingly, we observe that, although C-indices incorporate and, thus, require the
learner to obtain more information during the learning process than W -indices, the
relative relations of the considered restrictions remain the same. We start by gathering
results which directly follow from the previous section.
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Corollary 1. We have that

[TxtPsdExC ]REC = [TxtGExC ]REC, (Theorem 3),

[TxtItExC ]REC ⊆ [TxtSdExC ]REC, (Theorem 4),

[TxtGExC ]REC \ [TxtSdBcC ]REC 6= ∅, (Theorem 11),

[TxtSdExC ]REC \ [TxtItExC ]REC 6= ∅, (Theorem 12),

[TxtItExC ]REC \ [TxtTdExC ]REC 6= ∅, (Theorem 13).

We show the remaining results. First, we show that, just as for W -indices, behav-
iorally correct learners are more powerful than explanatory ones. We provide a sepa-
rating class exploiting that explanatory learners must converge to a single, correct hy-
pothesis. We collect elements on which mind changes are witnessed, while maintaining
decidability of the obtained language.

Theorem 14. We have that [TxtSdBcC ]REC \ [TxtGExC ]REC 6= ∅.

Next, we show that, just as for W -indices, a padding argument makes iterative be-
haviorally correct learners as powerful as Gold-style ones.

Theorem 15. We have that [TxtItBcC ]REC = [TxtGBcC ]REC.

We show that the classes of languages learnable by some behaviorally correct Gold-
style (or, equivalently, iterative) learner, can also be learned by partially set-driven ones.
We follow the proof which is given in a private communication with Sanjay Jain [7]. The
idea there is to search for minimal Bc-locking sequences without directly mimicking
the G-learner. We transfer this idea to hold when converging to C-indices as well. We
remark that, while doing the necessary enumerations, one needs to make sure these are
characteristic. One obtains this as the original learner eventually outputs characteristic
indices.

Theorem 16. We have that [TxtPsdBcC ]REC = [TxtGBcC ]REC.

Lastly, we investigate transductive learners. Such learners base their hypotheses on
a single element. Thus, one would expect them to benefit from dropping the requirement
to converge to a single hypothesis. Interestingly, this does not hold true. This surprising
fact originates from C-indices encoding characteristic functions. Thus, one can simply
search for the minimal element on which no “?” is conjectured. The next result finalizes
the map shown in Figure 1(b) and, thus, this section.

Theorem 17. We have that [TxtTdExC ]REC = [TxtTdBcC ]REC.
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