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Abstract. We study learning of indexed families from positive data where a learner can freely choose a hypothesis space (with
uniformly decidable membership) comprising at least the languages to be learned. This abstracts a very universal learning task
which can be found in many areas, for example learning of (subsets of) regular languages or learning of natural languages. We
are interested in various restrictions on learning, such as consistency, conservativeness or set-drivenness, exemplifying various
natural learning restrictions.

The contribution of this work is twofold. First, we present a general result on how the hypothesis spaces may be constructed
during learning, rather than beforehand. Using this result, we build on previous results from the literature and provide several
maps (depictions of all pairwise relations) of various groups of learning criteria, including a map for monotonicity restrictions and
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similar criteria and a map for restrictions on data presentation. Furthermore, we consider, for various learning criteria, whether
learners can be assumed consistent.

Keywords: Language learning in the limit, indexed family, hypothesis space, map, characteristic index

1. Introduction
We investigate the problem of algorithmically learning a description for a formal language (a computably enu-

merable subset of the set of all natural numbers) when presented successively all and only the elements of that
language. This is called inductive inference, a branch of (algorithmic) learning theory. For example, a learner h (a
computable device) might be presented more and more numbers. After each new number, h outputs a description
for a language as its conjecture. The learner h might decide to output a program for the set of all odd numbers, as
long as all numbers presented are odd and prime. Later, when h sees a 2, it might change this guess to a program for
the set of all prime numbers.

In the literature, many criteria for determining whether a learner h is successful on a (target) language L have
been proposed. Gold [15] gave a first, simple learning criterion, TxtGEx-learning,1 where a learner is successful if
and only if, on every text for L (listing of all and only the elements of L) it eventually stops changing its conjectures,
and its final conjecture is a correct description for the input language. Trivially, each single, describable language
L has a suitable constant function as a TxtGEx-learner (this learner constantly outputs a description for L). Thus,
we are interested in analyzing for which classes of languages L there is a single learner h learning each member of
L. This framework is also known as language learning in the limit and has been studied extensively, using a wide
range of learning criteria similar to TxtGEx-learning (see, for example, the textbook [16]).

A major branch of this analysis focuses on learning indexed families, that is, classes of languages L such that
there is an enumeration (Li)i∈N of all and only the elements of L for which the decision problem “x ∈ Li” is
decidable. Already for such classes of languages we get a rich structure, see the survey of previous work [29]. Here,
the learners learn with respect to some indexed family, the so-called hypothesis space. The conjectures of the learners
are then interpreted according to the hypothesis space and the learners learn a class of languages successfully if they
do so with respect to some hypothesis space. We are specifically interested in class comprising learning, where our
learners are free to choose any hypothesis space containing hypotheses at least for the target languages. This is in
contrast, for example, to learning with an explicitly given hypothesis space.

Since the appearance of the mentioned survey, only little work on indexable classes was conducted, while learn-
ing of arbitrary families of languages sprouted a new mode of analysis, map charting. This approach tries to further
the understanding of learning settings by looking at all relations between similar learning criteria and displaying
them as a map [21,22]. This approach builds on the pairwise relations which are already known in the literature and
completes them in interesting settings to understand one aspect more closely, for example regarding certain natural
restrictions on what kind of mind changes are allowed (which we will consider in Section 5) or the importance of
data presentation (which we will consider in Section 6).

We develop a very useful characterization of learning indexable families given in Theorem 1. Here we show
that learnability of an indexed family with an arbitrary hypothesis space is equivalent to the learnability by a learner
which only outputs programs for characteristic functions [4] and is considered successful when converging to such
a program which decides the target language. This result allows us to simplify many of our proofs, since now the
hypothesis space does not need to be chosen in advance.

With this characterization, we start our analysis by considering the restriction of consistent learning [1]. A
learner is consistent if and only if each of its hypotheses correctly reflects the data which the hypothesis is based
on. Note that, for arbitrary learning in the Gold-style model, learners cannot be assumed consistent in general [3],
a result termed the inconsistency phenomenon. The reason behind this result is essentially the same as for the
halting problem: a general hypothesis cannot be checked for consistency in a computable way. Since, for indexed
families, consistency of hypotheses is decidable, it comes at no surprise that here learners can, in general, be assumed

1Txt stands for learning from a text of positive examples; G stands for Gold-style learning and indicates that the learner has full information
on the data given; Ex stands for explanatory.
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Figure 1. Depiction of relations between G- and Sd-learners under various additional restrictions (see Fig. 1(a)) and syntactic and semantic
convergence criteria under various memory restrictions β for total learners (see Fig. 1(b)) when learning indexable classes. For a full list of the
considered restrictions, please see Section 2. Black solid lines imply inclusions (bottom-to-top, left-to-right). In Fig. 1(b), these inclusions are
trivial and the dashed line depicts the non-trivial proper inclusion [RTxtItEx]ind � [RTxtSdEx]ind. Greyly edged areas illustrate a collapse of
the enclosed learning criteria. There are no further collapses.

consistent [37]. However, to prove this result, crucial changes to the hypotheses are made (so as to make them
consistent), which might spoil other nice properties the learner might exhibit (such as never overgeneralizing the
true target language). In Section 4 we show several different ways in which total learners can be made consistent,
each maintaining other restrictions (such as, for example, conservative learning [1], where learners must not change
their mind while their hypothesis is consistent).

In Section 5 we consider one of the best-studied maps from other learning settings, the map of delayable learning
restrictions. We build on previously known results, such as that conservative learning is restrictive [24], and com-
plete the map both for the case of full information (where the learner has access to the full history of data shown)
and for set-driven learners (which only have access to the set of data presented so far, but not to the order of presen-
tation [34]). This builds on earlier analyses of monotone learning which has been studied in various settings [27].
We depict our results in Fig. 1(a). In particular, we show that the criteria cluster into merely five different learning
powers, i.e., many learning criteria allow for learning the same classes of languages. Among other things, we show
that (strong) non-U-shaped learning [2,11], where abandoning a correct hypothesis is forbidden, is not restrictive in
either setting (set-driven and full-information).

In Section 6 we consider in more detail what impact the access to information has on the learning power of
total learners. Additionally to full information and set-driven learning, we also consider iterative learning (where
the learner has access to its previous hypothesis, but only the current datum [34]). We give the complete map for
Ex-learning at the same time as Bc-learning (behaviorally correct learning, where the learner need not to stop
syntactically changing the conjecture, as long as it remains semantically correct [9,31]). We depict our findings in
Fig. 1(b).

These directions taken together (consistency, delayable restrictions, information access, syntactic vs. semantic
convergence) give a well-rounded picture, offering a glimpse on learning indexable classes from all commonly
studied angles.
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2. Preliminaries
In this section we introduce the mathematical notations and notions used throughout the paper. For non-

introduced notation we refer to [32]. Regarding the learning criteria, we follow the system of [19].

2.1. Language learning in the limit
We denote the set of natural numbers by N = {0, 1, 2, . . .}. With ⊆ and � we denote the subset and proper subset
relation between sets, respectively. With ∩,∪, \ we denote the set intersection, union, and difference, respectively.
We let ∅ and ε denote the empty set and empty sequence, respectively. We use P (R) as the set of all (total) com-
putable functions. If a function f is defined on an argument x we denote this by f (x)↓; otherwise, we write f (x)↑.
We fix an effective numbering (ϕe)e∈N of P , where e may be viewed as a program or index for the function ϕe.

We fix the symbol # called pause. For any set S ⊆ N, we denote S# := S ∪{#}. The set of all sequences of length
at most t ∈ N over S# is denoted by S

�t
# and the set of all finite sequences over N ∪ {#} by Seq. For two sequences

σ , τ , we let σ�τ denote their concatenation and we write σ ⊆ τ (σ � τ ) if and only if σ is a (proper) prefix of τ .
For a (possibly infinite) sequence σ , we let content(σ ) = range(σ ) \ {#}. For σ ∈ Seq, we denote the sequence with
the last element removed as σ−. Furthermore, we may interpret finite sequences as natural numbers and fix a total
order � on these such that, in particular, for all σ, τ ∈ Seq with σ ⊆ τ we have that σ � τ .

We call a computably enumerable set L ⊆ N a language. We learn indexed families of languages, that is, families
of languages (Li)i∈N where there exists a total computable function f such that, for all i, x ∈ N,

f (i, x) =
{

1, if x ∈ Li;
0, otherwise.

We learn these families with respect to hypothesis spaces, which are indexed families of languages themselves. In
general, a learner is a function h ∈ P . We examine learning from text. A text is a total function T : N → N ∪ {#}.
We denote the set of all texts as Txt. Similar to sequences, we define the content of a text T ∈ Txt as content(T ) =
range(T )\{#}. Furthermore, we call T a text for a language L if content(T ) = L; the set of all texts for L is denoted
by Txt(L). The canonical text of a language L is the enumeration of all elements in L in strictly ascending order
(if L is finite, the text returns # after all elements have been presented). Analogously, the canonical sequence of a
(finite) language L is the (finite) sequence of all elements in L in strictly ascending order. Additionally, we define
T [0] = ε and, for all n ∈ N with n > 0, (T [n] = T (0), . . . , T (n − 1)).

What kind of information a learner is given, is specified by an interaction operator. Formally, an interaction
operator is a function that takes a learner and a text as input arguments and outputs a (possibly partial) function that
is called learning sequence or sequence of hypotheses. We consider Gold-style or full-information learning [15],
denoted by G, iterative learning (It, [13,35]), partially set-driven or rearrangement-independent learning (Psd, [5,
33]), set-driven learning (Sd, [34]) and transductive learning (Td, [7,19]). Note that transductive learners may output
a special symbol “?” if the information given is not sufficient to make a guess. Formally, for all learners h ∈ P , texts
T ∈ Txt and i ∈ N,

G(h, T )(i) = h
(
T [i]);

Psd(h, T )(i) = h
(
content

(
T [i]), i);

Sd(h, T )(i) = h
(
content

(
T [i]));

It(h, T )(i) =
{

h(ε), if i = 0;
h(It(h, T )(i − 1), T (i − 1)), otherwise;

Td(h, T )(i) =

⎧⎪⎨⎪⎩
?, if i = 0;
Td(h, T )(i − 1), else, if h(T (i − 1)) = ?;
h(T (i − 1)), otherwise.
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Intuitively, Gold-style learners have full information on the elements given. Set-driven learners base their hypotheses
solely on the content of the information given, while partially set-driven learners additionally have a counter for the
iteration step. Iterative learners base their conjectures on their previous hypothesis and the current datum. Lastly,
transductive learners solely base their guesses on the current datum and may output “?” if the information is not
sufficient.

For two interaction operators β, β ′ we write β � β ′ if and only if every β-learner h can be compiled into an
equivalent β ′-learner h′ such that, for any text T , we have β(h, T ) = β ′(h′, T ). We note that Td � It � G and Sd �
Psd � G. As an example, every Sd-learner can be compiled into an Psd-learner by simply ignoring the counter.
Furthermore, note that any Td-learner may be simulated by a Sd-learner, however, the order of the hypotheses may
be changed. For any β-learner h with β � G, we let h∗, the starred learner, denote the G-learner simulating h. For
example, the starred learner of a Psd-learner h is defined, for all sequences σ , as h∗(σ ) = h(content(σ ), |σ |).

For a learner to successfully identify a language it has to satisfy certain restrictions. A famous example was given
by Gold, who required the learner to converge to a correct hypothesis for the target language [15]. This is called
explanatory learning and denoted by Ex. When we speak of correct hypotheses, it is with regard to an indexed
hypothesis space. Formally, a learning restriction is a predicate on a sequence of hypotheses p and a text T ∈ Txt.
In the case of explanatory learning, we get, for a given indexed hypothesis space H = (Hi)i∈N,

Ex(p, T ) ⇔ ∃n0∀n � n0 : p(n) = p(n0) ∧ Hp(n0) = content(T ).

We now give the intuition for the considered restrictions and define them formally afterwards. As an alternative
to Ex, for behaviorally-correct (Bc) learning one only requires semantic convergence, that is, after some point all
hypotheses must be correct hypotheses for the target language, but they do not need to be syntactically equal [9,31].

In addition to these convergence criteria there are various other properties to require from a learner that are
inspired from nature or other sciences. In non-U-shaped learning (NU, [2]), once the learner outputs a correct
hypothesis, it may not unlearn the language, i.e., it may only make syntactic mind changes. In strongly non-U-
shaped learning (SNU, [11]) not even these syntactic mind changes are allowed. In consistent learning (Cons, [1]),
each hypothesis must include the given information. There exist various monotonicity restrictions ([17,25,36]).
When learning strongly monotone (SMon), the learner may not discard elements present in previous hypotheses,
and in monotone learning (Mon) the learner is not allowed to remove correct data from its hypotheses. Furthermore,
in weakly monotone learning (WMon) the learner must remain strongly monotone while consistent with the input.
Similarly, in cautious learning (Caut, [30]), no hypothesis may be a proper subset of a prior hypothesis. As a
relaxation, in target-cautious learning (CautTar, [21]), no hypothesis may be a proper superset of the target language.
A specialization of cautious and weakly monotone learning is witness-based learning (Wb, [22]), where each mind
change must be justified by a witness. Witness-based learning is also a specialization of conservative learning
(Conv, [1]) where the learner may only make a mind change when an inconsistency is detected. If we only require
this for semantic mind changes, we call the learner semantically conservative (SemConv, [23]). Finally, in decisive
learning (Dec, [30]), the learner may not return to semantically abandoned hypotheses; in strongly decisive learning
(SDec, [20]), the learner may not return to syntactically abandoned hypotheses. Now, we give formal definitions for
theses restrictions. Let H = (Hi)i∈N be an indexed hypothesis space. For any sequence of hypotheses p and text
T ∈ Txt, define

Bc(p, T ) ⇔ ∃n0∀n � n0 : Hp(n) = content(T );
NU(p, T ) ⇔ ∀i, j, k : (

i � j � k ∧ Hp(i) = Hp(k) = content(T )
)

⇒ Hp(i) = Hp(j);
SNU(p, T ) ⇔ ∀i, j, k : (

i � j � k ∧ Hp(i) = Hp(k) = content(T )
)

⇒ p(i) = p(j);
Cons(p, T ) ⇔ ∀i : content

(
T [i]) ⊆ Hp(i);
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SMon(p, T ) ⇔ ∀i, j : i < j ⇒ Hp(i) ⊆ Hp(j);
Mon(p, T ) ⇔ ∀i, j : i < j ⇒ content(T ) ∩ Hp(i) ⊆ content(T ) ∩ Hp(j);
WMon(p, T ) ⇔ ∀i, j : i < j ∧ content

(
T [j ]) ⊆ Hp(i) ⇒ Hp(i) ⊆ Hp(j);

Caut(p, T ) ⇔ ∀i, j : Hp(i) � Hp(j) ⇒ i � j ;
CautTar(p, T ) ⇔ ∀i : ¬(

content(T ) � Hp(i)

);
Wb(p, T ) ⇔ ∀i, j : (∃k : i < k � j ∧ p(i) �= p(k)

)
⇒ (

content
(
T [j ]) ∩ Hp(j)

) \ Hp(i) �= ∅;
Conv(p, T ) ⇔ ∀i, j : (

i � j ∧ content
(
T [j ]) ⊆ Hp(i)

) ⇒ p(i) = p(j);
SemConv(p, T ) ⇔ ∀i, j : (

i � j ∧ content
(
T [j ]) ⊆ Hp(i)

) ⇒ Hp(i) = Hp(j);
Dec(p, T ) ⇔ ∀i, j, k : (i � j � k ∧ Hp(i) = Hp(k)) ⇒ Hp(i) = Hp(j);
SDec(p, T ) ⇔ ∀i, j, k : (i � j � k ∧ Hp(i) = Hp(k)) ⇒ p(i) = p(j).

We combine any two learning restrictions δ and δ′ by intersecting them, which is denoted by their juxtaposition.
With T we define the learning restriction which is always true and interpret it as absence of a learning restriction.

Finally, a learning criterion is a tuple (α, C, β, δ), where α and δ are learning restrictions, C is the set of admissi-
ble learners, usually P or R, and β is an interaction operator. We write τ(α)CTxtβδ to denote the learning criterion
and omit C if it equals P , and a learning restriction if it equals T. Let h ∈ C be an admissible learner. We say that h

τ(α)CTxtβδ-learns a language L with respect to some hypothesis space H if and only if, for all texts T ∈ Txt, we
have α(β(h, T ), T ) and, for all T ∈ Txt(L), δ(β(h, T ), T ). Note that α has to hold on all texts, while δ only has to
be true on texts of the learnable language L. The set of languages τ(α)CTxtβδ-learned by h with respect to some
hypothesis space H is denoted by τ(α)CTxtβδ(h). The class of such sets over all admissible learners is denoted by
[τ(α)CTxtβδ]ind, the so-called learning power of τ(α)CTxtβδ-learners.

2.2. Normal forms
To prove certain statements on a learner, there are properties that come in handy. For example, except for Cons, all
considered learning restrictions are delayable. Intuitively, a learning restriction is delayable if it allows for arbitrary,
but finite postponing of hypotheses [21]. Formally, a learning restriction is delayable if and only if for all sequences
of hypotheses p, texts T , T ′ ∈ Txt with content(T ) = content(T ′) and non-decreasing, unbounded functions
r : N → N, if we have δ(p, T ) and, for all n ∈ N, content(T [r(n)]) ⊆ content(T ′[n]), then also δ(p ◦ r, T ′) holds.

A common property of the considered learning restrictions is that they solely depend on the semantic of the
hypotheses and on the position of mind changes. This property is formalized in the notion of pseudo-semantic
learning restrictions [23]. A learning restriction δ is pseudo-semantic if and only if for all learning sequences p

and texts T ∈ T, if δ(p, T ) and for a learning sequence p′, with, for all n ∈ N, p(n) and p′(n) are defined and
semantically equivalent and p(n) = p(n + 1) implies p′(n) = p′(n + 1), then δ(p′, T ). All considered learning
restrictions are pseudo-semantic.

We regularly make use of locking sequences. These are sequences that contain enough information such that a
given learner, after seeing this sequence, suggests a correct hypothesis for the target language and does not change
its mind whatever data from the target language it is given. Formally, let h be a G-learner and H = (Hi)i∈N a
hypothesis space. Then a sequence σ ∈ Seq is a locking sequence for h on a language L, if, for all sequences
τ ∈ L∗

#, we have h(σ ) = h(σ�τ) and Hh(σ�τ) = L [5]. For Bc-learners, we drop the first requirement and call σ a
Bc-locking sequence [16]. This definition can directly be expanded to learners with other interaction operators. Let
h be such a learner and consider its starred learner h∗. Then, a sequence σ is called a locking sequence for h on L

if and only if σ is a locking sequence for h∗ on L. We remark that, in the case of partially set-driven and set-driven
learners, we refer to locking sequences as locking information and locking set, respectively. Note that, if a learner
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learns a language there always exists a (Bc-) locking sequence [5], but there exist texts where no initial sequence
thereof is a (Bc-) locking sequence. Given a learner h and a language L it learns, if on any text T ∈ Txt(L) there
exists an initial sequence thereof which is a (Bc-) locking sequence for h on L, we call h strongly (Bc-) locking on
L. If h is strongly (Bc-) locking on every language it learns, we call h strongly (Bc-) locking [21].

3. Learning indexed families without hypothesis spaces
In this section, we present a useful result on which we build our remaining results. When learning indexed

families with respect to (arbitrary) hypothesis spaces, the choice of the latter is crucial for successful learning.
However, it is often a non-trivial task to construct the fitting hypothesis space. With Theorem 1, we show that one
can forgo this necessity and, so to speak, obtain the hypothesis space on the run.

We make use of so-called C-indices or characteristic indices [4]. Intuitively, a C-index of a language L is a
program for its characteristic function. Formally, an index e is a C-index of the language L if and only if ϕe ≡ χL.
We also denote Ce = {x ∈ N|ϕe(x) = 1.}. Note that if e is a C-index of L then Ce = L. Now, we can request
a learner to converge to a C-index instead of an index with respect to some hypothesis space. Exemplary, when
requiring syntactic convergence to a C-index we write, for all sequences of hypotheses p and all texts T ,

ExC(p, T ) ⇔ ∃n0∀n � n0 : p(n) = p(n0) ∧ Cp(n0) = content(T ).

Adjusting the other considered restrictions to cover C-indices is immediate and, thus, omitted. For clarity, we write
τ(α)CTxtβδC in case of learning C-indices. Analogously, we denote with [τ(α)CTxtβδC] the set of all classes
τ(α)CTxtβδC-learnable by some learner h.

In particular, we show that learners which output characteristic indices on any input may be translated into total
learners which learn with respect to a hypothesis space. To that end, we define the restriction CInd [4], where the
learner must output C-indices. Formally, for any hypothesis sequence p and any text T , we have

CInd(p, T ) ⇔ ∀i, x : ϕp(i)(x)↓ ∧ ϕp(i)(x) ∈ {0, 1}.

We show the equality of the two learning approaches. Firstly, the output when learning with respect to a hypothesis
space can easily be interpreted as a characteristic index. For the other direction, we consider all hypotheses output
by the τ(CInd)-learner, that is, the learner which outputs C-indices on any input, as hypothesis space and choose
the right (minimal) index of this hypothesis space to maintain successful learning.

Theorem 1. Let α, δ be pseudo-semantic restrictions, let β � G be an interaction operator and let L be an indexed
family. Then, L is τ(CIndα)TxtβδC-learnable by some learner h if and only if there exist a total learner h′ and a
hypothesis space H such that h′τ(α)Txtβδ-learns L with respect to H.

Proof. For the first direction, let L ∈ [τ(CIndα)TxtβδC] be an indexed family learned by a τ(CIndα)TxtβδC-
learner h. Let h∗ be the starred form of h, that is, the G-learner simulating h. As h is τ(CInd), so is h∗ and we can
define the indexed hypothesis space H = (Ch∗(σ ))σ∈Seq. As h learns L, we have L ⊆ H. Fix an order � on the set
of all finite sequences. Then, we define the learner h′, for notational convenience in its starred form, for any finite
sequence σ as(

h′)∗
(σ ) = min

�
{
σ ′ ∈ Seq|h∗(σ ′) = h∗(σ )

}
.

Note that the min-search terminates as σ is a candidate thereof. Intuitively, (h′)∗(σ ) returns the �-least sequence
σ ′ such that h∗ does not change, that is, h∗(σ ) = h∗(σ ′). This sequence is then an index for the hypothesis space
H. Now, for two sequences σ and τ , we have h∗(σ ) = h∗(τ ) if and only if (h′)∗(σ ) = (h′)∗(τ ). Also, h∗(σ ) and
(h′)∗(σ ) are semantically equivalent. Thus, h′τ(α)Txtβδ-learns L with respect to H.
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Conversely, let L be such that there exist a total learner h′ and an indexed hypothesis space H = (Lj )j∈N such

that h′τ(α)Txtβδ-learns L with respect to H. We provide a learner h which τ(CIndα)TxtβδC-learns L. Let (h′)∗
and h∗ denote their starred forms. As H is an indexed hypothesis space, there exists a total computable function f

such that for all j, x ∈ N

f (j, x) =
{

1, x ∈ Lj ;
0, otherwise.

Due to the S-m-n Theorem, there exists a strictly monotonically increasing function g ∈ R such that, for all j, x ∈ N,
we have ϕg(j)(x) = f (j, x). Now, we define, for all finite sequences σ ∈ Seq,

h∗(σ ) = g
((

h′)∗
(σ )

)
.

We conclude the proof by showing that h τ(CIndα)TxtβδC-learns L. We first show that h is τ(CInd). This follows
immediately as, for any finite sequence σ , there exists j ∈ N such that

ϕh∗(σ )(x) = ϕg(j)(x) = f (j, x) =
{

1, x ∈ Lj ;
0, otherwise.

As h′ only makes mind changes when h does and as, for any σ ∈ Seq, L(h′)∗(σ ) = Ch∗(σ ), we have that h

τ(α)TxtβδC-learns L. �

We will see that in many cases requiring the learner h′ to be total is not restrictive. It is already known that,
when learning arbitrary classes of recursively enumerable languages, Gold-style learners, obeying delayable learning
restrictions, may be assumed total [21]. This result directly transfers to learning indexed families with respect to
some hypothesis space.

Theorem 2 ([21]). For delayable restrictions δ we get [RTxtGδ]ind = [TxtGδ]ind.

Proof. This proof follows [21] and is included for completeness. Immediately, we get the inclusion [RTxtGδ]ind ⊆
[TxtGδ]ind. For the other, let h TxtGδ-learn L with respect to a hypothesis space H. Let e ∈ N such that h = ϕe. To
define the equivalent learner, let � be a Blum complexity measure [6], that is for example, for e, x ∈ N, �e(x) could
be the number of steps the program e needs to halt on input x. We define a learner h′ such that, for all sequences
σ ∈ Seq,

h′(σ ) = h
(

max⊆
({

σ ′ ⊆ σ |�e

(
σ ′) � |σ |} ∪ {ε})).

As we only allow total learning sequences of h for languages in L, we have h(ε)↓ and, thus, h′ is indeed total and
computable. We show that h RTxtGδ-learns L with respect to H. To that end, we use that δ is delayable. Let L ∈ L
and T ∈ Txt(L). Now, for all n ∈ N, let r(n) = | max⊆({σ ′ ⊆ T [n]|�e(σ

′) � n.} ∪ {ε})|. Note that, for all n ∈ N,
we have h′(T [n]) = h(T [r(n)]). As δ is delayable, it suffices to show that r is non-decreasing and unbounded to
prove that h′RTxtGδ-learns L with respect to H. By definition of r , we have that r is non-decreasing and, for all
n ∈ N, we have r(n) � n and that r is unbounded, as there exists m ∈ N with m � n such that �e(T [n]) � m and,
thus r(m) � n. This concludes the proof. �
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4. Consistent learning
Certain learners exhibit various properties which ease mathematical proofs and provide insight in the necessary

learning behavior. One such is being consistent with the information given while maintaining learning power. For
example, various behaviorally correct learners have been investigated for consistency [23]. We study whether this
can also be assumed when learning indexed families and also with explanatory learners. Initial results can be found
within the literature [1,27–29]. We complete these using condense results (see Lemmas 4 to 6) and obtain Theorem 3,
the main result of this section. For the remainder this section, we fix � := {G, Psd, Sd} and  := {Ex, Bc}.

Theorem 3. For all δ ∈ {T, Mon, SMon, WMon, CautTar, SemConv, Conv, NU, SNU, Dec, SDec}, all δ′ ∈ 

and all β ∈ �, we have[
τ(Cons)Txtβδδ′]

ind = [
RTxtβδδ′]

ind.

Unrestricted Bc-learners can be made consistent by simply patching the missing elements into the hypothesis. As
one can check for consistency, one can decide whether changing the hypothesis is necessary or not. It is immediate
to see that this strategy works out as, firstly, the padding needs only to be done while the learner did not converge
yet and, secondly, as the learner needs not to serve any additional requirements. Note that this also preserves Ex-
convergence. Interestingly, the same idea also works out for strongly monotone and monotone learners. Especially
here, Theorem 1 comes in handy as we create the hypothesis space containing the padded hypotheses on the way.

Lemma 4. For β ∈ �, δ ∈ {T, Mon, SMon} and δ′ ∈ , we have[
τ(Cons)Txtβδδ′]

ind = [
RTxtβδδ′]

ind.

Proof. The inclusion [τ(Cons)Txtβδδ′]ind ⊆ [RTxtβδδ′]ind is immediate. For the other, we use a construction
which patches in the seen data while maintaining the given learning restriction, as seen when learning of arbitrary
classes [23]. By Theorem 1, it suffices to show[

τ(CInd)Txtβδδ′
C

] ⊆ [
τ(CIndCons)Txtβδδ′

C

]
.

Let h be a learner and let L ⊆ τ(CInd)Txtβδδ′
C(h). We define a τ(CIndCons)Txtβδδ′

C-learner h′ using some
auxiliary functions. For ease of notation, we use h and h′ as their starred learners. Due to the S-m-n Theorem, there
exists s ∈ R such that, for all x ∈ N and all finite sequences σ ,

ϕs(σ )(x) =
{

1, if x ∈ content(σ ) ∨ ϕh(σ)(x) = 1;
0, otherwise.

We now define the learner h′ such that for any finite sequence σ

h′(σ ) =
{

h(σ ), if content(σ ) ⊆ Ch(σ);
s(σ ), otherwise.

Note that ϕs(σ ) and h′ are total because h is a τ(CInd)-learner. Intuitively, h′ has the same hypothesis as h, if this
hypothesis is consistent. Otherwise, it patches the input set into the hypothesis of h. Thus, by construction, h′ only
outputs consistent C-indices, i.e., it is a τ(CIndCons)-learner. In particular, note that for any sequence σ we have
that

Ch′(σ ) = Ch(σ) ∪ content(σ ). (1)
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It remains to be shown that h′δ′-learns every language in L and that it obeys the restriction δ while doing so. We
first show δ′-convergence. Let L ∈ L and T ∈ Txt(L). As h learns L, there exists n0 ∈ N such that, for all n � n0,
we have Ch(T [n]) = L and, in the case of δ′ = Ex, also h(T [n]) = h(T [n0]). For n � n0, as h(T [n]) is consistent,
h′(T [n]) will output h(T [n]), proving that h′δ′-learns L from text T .

Lastly, we prove that h′ learns L without violating the restriction δ. For δ = T this follows immediately. We
consider the remaining restrictions separately. Let L ∈ L and let T ∈ Txt(L).

1. Case: δ = SMon. Let n,m ∈ N such that n � m. Since h is SMon, we have that

Ch(T [n]) ⊆ Ch(T [m]).

Now, by Equation (1), we get that h′ is SMon as

Ch′(T [n]) = Ch(T [n]) ∪ content
(
T [n]) ⊆ Ch(T [m]) ∪ content

(
T [m]) = Ch′(T [m]).

2. Case: δ = Mon. Let n,m ∈ N such that n � m. Since h is Mon, we have that

Ch(T [n]) ∩ content(T ) ⊆ Ch(T [m]) ∩ content(T ).

Now, by Equation (1), we get that h′ is Mon as

Ch′(T [n]) ∩ content(T ) = (
Ch(T [n]) ∪ content

(
T [n])) ∩ content(T )

⊆ (
Ch(T [m]) ∪ content

(
T [m])) ∩ content(T )

= Ch′(T [m]) ∩ content(T ).

This concludes the proof.
�

The former strategy does not work for target-cautious learners. The reason is that by simply adding missing
elements, one can suddenly overgeneralize the target language. “Resetting” the conjecture to solely the information
given when determining non-consistency preserves target-cautiousness, as we show in the next result. Interestingly,
this strategy of “resetting” also works for weakly monotone learners as they, when inconsistent, may propose new
suggestions.

Lemma 5. For β ∈ �, δ ∈ {WMon, CautTar} and δ′ ∈ , we have[
τ(Cons)Txtβδδ′]

ind = [
RTxtβδδ′]

ind.

Proof. The inclusion [τ(Cons)Txtβδδ′]ind ⊆ [RTxtβδδ′]ind is immediate. For the other, it suffices to show
[τ(CInd)Txtβδδ′

C] ⊆ [τ(CIndCons)Txtβδδ′
C], due to Theorem 1. We use a similar construction as used for the

case of W -indices [23]. The idea is to output solely the content of the given data if the original learner is not con-
sistent. Let h be a learner and let L ⊆ τ(CInd)Txtβδδ′

C(h). We define a learner h′ which τ(CIndCons)Txtβδδ′
C-

learns L. For ease of notation, we use h and h′ as their starred learners. We now define the learner h′, such that for
any finite sequence σ ∈ Seq

h′(σ ) =
{

h(σ ), if content(σ ) ⊆ Ch(σ);
ind(content(σ )), otherwise.

Note that h′ is total and computable because h only outputs C-indices. By construction, h′ only outputs consistent
C-indices, i.e., it is a τ(CIndCons)-learner.
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It remains to be shown that h′δ′-learns every language in L while obeying the restriction δ. We first show δ′-
convergence. Let L ∈ L and T ∈ Txt(L). As h learns L, there exists n0 such that, for all n � n0, we have
Ch(T [n]) = L and, in the case of δ′ = Ex, also h(T [n]) = h(T [n0]). For n � n0, as h(T [n]) is consistent, h′(T [n])
will output h(T [n]), proving that h′δ′-learns L on text T .

Lastly, we prove that h′ satisfies the restriction δ. We consider the restrictions separately. Let L ∈ L and let
T ∈ Txt(L).

1. Case: δ = WMon. Let n,m ∈ N such that n � m and content(T [m]) ⊆ Ch′(T [n]). We show that
Ch′(T [n]) ⊆ Ch′(T [m]). If h(T [n]) is not consistent, that is, content(T [n]) � Ch(T [n]), then Ch′(T [n]) =
content(T [n]). Thus, we have that

Ch′(T [n]) = content
(
T [n]) ⊆ content

(
T [m]) ⊆ Ch′(T [m]).

Otherwise, h(T [n]) is consistent and, thus, Ch(T [n]) = Ch′(T [n]). Since, by assumption,
content(T [m]) ⊆ Ch′(T [n]) and since h is weakly monotone, we have that Ch(T [n]) ⊆ Ch(T [m]) and
also that Ch(T [m]) is consistent. Thus, in this case we get

Ch′(T [n]) = Ch(T [n]) ⊆ Ch(T [m]) = Ch′(T [m]).

2. Case: δ = CautTar. Let n ∈ N, then h′(T [n]) outputs either h(T [n]), in which case the hypothesis is target-
cautious due by assumption, or it outputs the conjecture ind(content(T [n])). As content(T [n]) ⊆
content(T ), this hypothesis is also target-cautious. �

Although (semantically) conservative learners may change their mind when being inconsistent with the data
given, the above strategy does not work. The problem is that one may make them consistent too early and, thus,
prevent later mind changes from happening. An interesting strategy solves the problem. One mimics the (possibly)
inconsistent learner on information without repetition. Learning is preserved this way, as when inferring infinite
target languages there will always be new information to correct an incorrect conjecture. On the other hand, learning
finite target languages is also successful since, given all information without repetition, either the learner was correct
anyway or making it consistent is a correct guess.

Lemma 6. For β ∈ �, δ ∈ {SemConv, Conv} and δ′ ∈ , we have[
τ(Cons)Txtβδδ′]

ind = [
RTxtβδδ′]

ind.

Proof. The inclusion [τ(Cons)Txtβδδ′]ind ⊆ [RTxtβδδ′]ind is immediate. For the other, we use a simi-
lar construction as when learning W -indices [23]. By Theorem 1, it suffices to show [τ(CInd)Txtβδδ′

C] ⊆
[τ(CIndCons)Txtβδδ′

C]. Let h be a learner and let L ⊆ τ(CInd)Txtβδδ′
C(h). We define a learner h′ which

τ(CIndCons)Txtβδδ′
C-learns L. For ease of notation, we use h and h′ as their starred learners. Given a se-

quence σ , we write σ̃ for the sequence without repetitions or pause symbols. Analogously, Psd-learners given
(content(σ ), |σ |) consider (content(σ̃ ), |σ̃ |) instead. Notably, Sd-learners receive the same information since we
have content(σ ) = content(σ̃ ). Now, we define h′ such that, for all finite sequences σ ∈ Seq,

h′(σ ) =
{

h(σ̃ ), if content(σ̃ ) ⊆ Ch(σ̃ );
ind(content(σ̃ )), otherwise.

Note that, by construction, h′ is a τ(CIndCons)-learner. The intuition for the learner h′ is then to mimic h on
information without repetition. This is important to ensure (semantic) conservativeness. Given σ , it either outputs
the same hypothesis as h(σ̃ ), if this is consistent, or it outputs solely a C-index for the content of the input.

Next, we show that h′δ′-learns L. Let L ∈ L and T ∈ Txt(L). We distinguish whether L is finite or not.
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1. Case: L is finite. Then, there exists a minimal n0 ∈ N such that content(T [n0]) = L. Then, by definition,
for all n � n0, we have that h′(T [n0]) = h′(T [n]) as no new element will be witnessed. Now, if
h(T [n0]) is consistent, then, because h is (semantically) conservative and thus target-cautious, we
have Ch(T [n0]) = L. Otherwise, h′ outputs ind(content(T [n0])). In both cases, h′(T [n0]) is a correct
hypothesis.

2. Case: L is infinite. Note that the transition to text T from the corresponding text T ′ ∈ Txt(L) which does not
contain any duplicates or pause-symbols can be done using an unbounded, non-decreasing function
r : N → N, that is, T = T ′ ◦ r . As δ′ is delayable, it suffices to show the convergence on text T ′.
As h also converges on T ′, there exists some n0 such that, for all n � n0, we have Ch(T ′[n]) = L

and, if δ′ = Ex, also h(T ′[n0]) = h(T ′[n]). In particular, for all n � n0, h(T ′[n]) is consistent and,
thus, h′(T ′[n]) = h(T̃ ′[n]) = h(T ′[n]). Thus, h′δ′-learns L from text T ′ since h does and, as δ′ is
delayable, h′ also learns L from text T .

It remains to be shown that h′ obeys δ. The basic idea is that h′ may only make a mind change if it sees a new
element which is not consistent with the current hypothesis. Formally, let L ∈ L and T ∈ Txt(L). Furthermore, let
n,m ∈ N, with n < m, be such that content(T [m]) ⊆ Ch′(T [n]). We distinguish between the two cases for δ.

1. Case: δ = SemConv. We show that Ch′(T [n]) = Ch′(T [m]). In the case of content(T [n]) = content(T [m]),
this follows by definition. Otherwise, there exists an element in content(T [m]) which is not in
content(T [n]). Thus, in order for Ch′(T [n]) to enumerate content(T [m]), that is, content(T [m]) ⊆
Ch′(T [n]), it must hold that content(T [m]) ⊆ Ch(T̃ [n]). Then, since h is semantically conservative, we

have Ch(T̃ [n]) = C
h(T̃ [m]). In particular, h(T̃ [m]) is consistent, meaning that Ch′(T [m]) = C

h(T̃ [m]).
Altogether, we get

Ch′(T [n]) = Ch(T̃ [n]) = C
h(T̃ [m]) = Ch′(T [m]).

2. Case: δ = Conv. This case follows an analogous proof-idea, the main difference being that semantic equal-
ities need to be replaced with syntactic ones. We show that h′(T [n]) = h′(T [m]). In the case of
content(T [n]) = content(T [m]), this follows by definition. Otherwise, there exists an element in
content(T [m]) which is not in content(T [n]). Thus, in order for Ch′(T [n]) to enumerate content(T [m]),
that is, content(T [m]) ⊆ Ch′(T [n]), it must hold that content(T [m]) ⊆ Ch(T̃ [n]). Then, since h is (syn-

tactically) conservative, we have h(T̃ [n]) = h(T̃ [m]). In particular, h(T̃ [m]) is consistent, meaning
that h′(T [m]) = h(T̃ [m]). Altogether, we get

h′(T [n]) = h
(
T̃ [n]) = h

(
T̃ [m]) = h′(T [m]),

which concludes the proof.
�

We note that none of the above strategies work for learners which may not return to previous guesses, say,
non-U-shaped learners, as one may, by patching missing elements into the hypotheses or “resetting” the hypotheses,
accidentally produce a hypothesis for the target language and later discard it temporarily. However, another widely
used strategy, called poisoning [8], works in this case. The main idea is to “poison” wrong hypotheses, that is, create
obviously incorrect hypotheses. Since inconsistent hypotheses cannot be correct, we can poison those and obtain a
consistent learner.

Lemma 7. For β ∈ �, δ ∈ {NU, SNU, Dec, SDec} and δ′ ∈ , we have[
τ(Cons)Txtβδδ′]

ind = [
RTxtβδδ′]

ind.
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Proof. We would like to express our gratitude to the anonymous reviewer who provided helpful feedback in devel-
oping the following proof. Observe that the inclusion [τ(Cons)Txtβδδ′]ind ⊆ [RTxtβδδ′]ind is immediate. For the
other direction, by Theorem 1, it suffices to show[

τ(CInd)Txtβδδ′
C

] ⊆ [
τ(CIndCons)Txtβδδ′

C

]
.

Let h be a learner and let L ⊆ τ(CInd)Txtβδδ′
C(h). We consider h in its starred form to prove the statement

for all β ∈ � at once. Consider the class of hypotheses made by h, that is, H = (Ch∗(σ ))σ∈Seq. Intuitively, we
construct an indexed family F containing poisoned hypotheses as follows. We start with a computable set F which
is co-infinite, that is, N\F is infinite, and which differs from all possible hypotheses made by h, that is, differs from
all sets in H, at infinitely many positions. We then extend this set with some finite information which grows as the
data input grows. In particular, we will make it consistent. We then use these sets in case the original hypothesis was
inconsistent (and therefore wrong).

For the formal proof, we use the following auxiliary notation. Given the interaction operator β and two finite
sequences σ, τ ∈ Seq, we write σ �β τ if and only if,

• in the case of β = G, we have σ ⊆ τ ;
• in the case of β = Psd, there exists a text T ∈ Txt and n,m ∈ N, with n � m, such that content(T [n]) =

content(σ ) and content(T [m]) = content(τ );
• in the case of β = Sd, we have content(σ ) ⊆ content(τ ).

Intuitively, σ �β τ means that σ contains less information than τ according to β.
We construct F formally. Using a diagonalisation argument, we obtain a computable set F which is co-infinite,

that is, N \ F is infinite, and which differs from, for all τ ∈ Seq, Ch∗(τ ) at infinitely many positions. Let m be
a bijective computable function such that, for all σ, τ ∈ Seq, | max(content(σ ))| � m(σ) and, if σ �β τ then
m(β(σ)) � m(β(τ)). Respecting the notation of starred learners, we write m∗(σ ) = m(β(σ)). Intuitively, m creates
a numbering which ensures that later information obtains a larger number.

For each σ ∈ Seq, let f̃ ∈ R be such that C
f̃ ∗(σ )

is the set containing the first m∗(σ ) many elements which are
not present in F . As F is co-infinite, we will always find such elements. Furthermore note that by the choice of m∗
we have content(σ ) ⊆ C

f̃ ∗(σ )
. Now, let f ∈ R be such that

Cf ∗(σ ) = F ∪ C
f̃ ∗(σ )

.

Note that content(σ ) ⊆ Cf ∗(σ ). In the end, define F = (Cf ∗(σ ))σ∈Seq.
Now, given a finite sequence σ ∈ Seq as input, consider the new learner g defined as

g∗(σ ) =
{

h∗(σ ), if content(σ ) ⊆ Ch∗(σ ),

f ∗(σ ), otherwise.

The learner g is a β-learner and consistent by definition. Furthermore, the learner g maintains δ′-learning as when-
ever h outputs a correct (and therefore consistent) hypothesis, g outputs the (syntactically) same hypothesis. We
show that it obeys the restriction δ as well. Let σ, τ ∈ Seq be such that σ ⊆ τ and Cg∗(σ ) = Cg∗(τ ), which equals L

in case δ equals NU and SNU. We show that for each ρ ∈ Seq with σ ⊆ ρ ⊆ τ , we have Cg∗(σ ) = Cg∗(ρ) = Cg∗(τ )

(in case δ equals NU and Dec) and g∗(σ ) = g∗(ρ) = g∗(τ ) (in case δ equals SNU and SDec).
If β(σ) = β(τ), we get the result immediately. Otherwise, assume β(σ) �= β(τ). Thus, Cf ∗(σ ) �= Cf ∗(τ ) and, by

definition of g, the only possibility where Cg∗(σ ) = Cg∗(τ ) may happen is that g∗(σ ) = h∗(σ ) and g∗(τ ) = h∗(τ ).
As h is a δ-learner, we have Ch∗(σ ) = Ch∗(ρ) = Ch∗(τ ). This, in particular implies

content(σ ) ⊆ content(ρ) ⊆ content(τ ) ⊆ Ch∗(τ ) = Ch∗(ρ).

Thus, g∗(ρ) = h∗(ρ) and, therefore, Cg∗(σ ) = Cg∗(ρ) = Cg∗(τ ) (in case δ equals NU and Dec) and g∗(σ ) =
g∗(ρ) = g∗(τ ) (in case δ equals SNU and SDec). This means that g maintains δ. �
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Altogether, the lemmas above give the proof of Theorem 3.

5. Delayable map for learning indexed families
In this section we compare the power of (possibly partial) learners underlying various delayable learning restric-

tions to each other. First, we gather known results from literature. It is a well-known fact that learners need time in
order to obtain full learning power [27], that is, set-driven learners lack learning power. Furthermore, in the literature
monotonic learners have been investigated thoroughly [27].

Theorem 8 ([27]). We have [TxtGEx]ind \ [TxtSdEx]ind �= ∅ and

[TxtSdSMonEx]ind = [TxtGSMonEx]ind � [TxtSdMonEx]ind

� [TxtGMonEx]ind � [TxtSdWMonEx]ind

= [TxtSdEx]ind = [TxtGWMonEx]ind.

We remark that weak monotonicity as well as conservativeness is no restriction to set-driven learners [27]. We
expand this result by showing that set-driven learners may be even assumed to be witness-based. This way, we also
capture the remaining restrictions, such as (target-) cautiousness and (strong) decisiveness. To obtain the desired
result, we first show that target-cautious and witness-based Gold-style learners possess the same learning power.
The idea is that, as target-cautious learners never overgeneralize the target language, there always remain elements
as witnesses to justify a mind change if the current hypothesis is wrong.

Theorem 9. We have [TxtGWbEx]ind = [TxtGCautTarEx]ind.

Proof. The inclusion [TxtGWbEx]ind ⊆ [TxtGCautTarEx]ind is straightforward. For the other, by assuming that
G-learners are total, see Theorem 2, and by Theorem 1, it suffices to show[

τ(CInd)TxtCautTarGExC

] ⊆ [
τ(CInd)TxtGWbExC

]
.

Let h be a learner with L ⊆ τ(CInd)TxtGCautTarExC(h). Using Theorem 3, we can assume h to be consistent, i.e.,
L ⊆ τ(CIndCons)TxtCautTarGExC(h). We now prove that the following learner h′ is a τ(CInd)TxtGWbExC-
learner for L. Let h′(ε) = h(ε) and, for all finite σ ∈ Seq and x ∈ N, let

h′(σ�x
) :=

{
h′(σ ), if x ∈ Ch′(σ );
h(σ�x), otherwise.

Intuitively, h′ only updates its hypothesis if the latest datum may be used as a witness for a mind change. As h is
also consistent, we immediately have that h′ is witness-based. Furthermore, note that h′ outputs a C-index on every
input and thus is a τ(CInd)-learner.

It remains to be shown that h′ learns L. To that end, let L ∈ L and T ∈ Txt(L). Since h correctly learns L

there exists n0 ∈ N such that, for all n � n0, we have h(T [n]) = h(T [n0]) and ϕh(T [n]) = χL. We distinguish the
following cases.

1. Case: h′(T [n0]) is a C-index for L. In this case, L\Ch′(T [n0]) = ∅, and thus h′ cannot change its mind again.
Thus, it converges correctly.

2. Case: h′(T [n0]) is no C-index for L. As h is target-cautious and h′ mimics h, it cannot hold L � Ch′(T [n0]).
Thus, there exists x ∈ L with x /∈ Ch′(T [n0]). By definition of h′ and by consistency of h, we have
x /∈ content(T [n0]). Let n1 be such that x ∈ content(T [n1]). Then, by construction, for all n � n1,
we have that h′(T [n]) = h(T [n1]), which is a C-index for L. �
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This equality also includes weakly monotone learners. Thus, we already have that these are as powerful as
set-driven learners. However, we go one step further and show that these learners may even be assumed total. We
make use of Theorems 1 and 2. The idea is to mimic the Gold-style learner on the minimal, consistent hypothesis.
This way, target-cautiousness is preserved as well as the learning power, since no guess overgeneralizes the target
language and, thus, checking for consistency is a valid strategy.

Theorem 10. We have [RTxtSdCautTarEx]ind = [TxtGCautTarEx]ind.

Proof. The inclusion [RTxtSdCautTarEx]ind ⊆ [TxtGCautTarEx]ind is immediate. For the other one, as G-learner
may be assumed total, see Theorem 2, and by Theorem 1, it suffices to show[

τ(CInd)TxtGCautTarExC

] ⊆ [
τ(CInd)TxtSdCautTarExC

]
.

Let h be a learner and let L ⊆ τ(CInd)TxtGCautTarExC(h). By Theorem 3, we may assume h to be consistent.
For a finite set D, for k � |D|, let σD[k] be the canonical sequence of D of length k, that is, the sequence of the first
k elements in D in strictly ascending order, and define the Sd-learner h′ as

h′(D) = h
(
σD

[
min

{
k′ � |D||D ⊆ Ch(σD[k′])

}])
.

Mimicking learner h, the newly defined learner h′ is target-cautious whenever h is and it always outputs C-indices.
It remains to be shown that h′SdExC-learns L. Let, to that end, L ∈ L. We distinguish the following cases.

1. Case: L is finite. Let k0 ∈ N be the minimal k′ � |L| such that L ⊆ Ch(σL[k′]). By consistency of h, such k′
exists. Then, we have by h being target-cautious that ¬(L � Ch(σL[k0])). Altogether, we have

Ch′(L) = Ch(σL[k0]) = L.

2. Case: L is infinite. Then, consider the canonical text T of L. As h learns L, there exists a minimal n0 ∈ N
such that Ch(T [n0]) = L. By target-cautiousness of h and minimal choice of n0, there exists n1 � n0
such that for all n < n0 we have

content
(
T [n1]

) \ Ch(T [n]) �= ∅.

Then, for all D with content(T [n1]) ⊆ D ⊆ L, we have h′(D) = h(T [n0]) as desired. �

Again with Theorem 1, we obtain that set-driven learners may be assumed total and witness-based. The idea
resembles the approach for partially set-driven learners of arbitrary classes of languages [22]. To obtain this, we
assume the information coming in a certain order and then mimic the learner on the least input where no mind
change is witnessed. Then, while enumerating, we check whether any later datum causes a mind change. If so, we
stop the enumeration. Especially here, Theorem 1 comes in handy as we do not need to fix the hypothesis space
beforehand, but rather build it up on the fly.

Theorem 11. We have [RTxtSdWbEx]ind = [RTxtSdCautTarEx]ind.

Proof. The direction [RTxtSdWbEx]ind ⊆ [RTxtSdCautTarEx]ind follows immediately. For the other, by Theo-
rem 1, it suffices to show that[

τ(CInd)TxtSdCautTarExC

] ⊆ [
τ(CInd)TxtSdWbExC

]
.

Let h τ(CInd)TxtSdCautTarExC-learn L. We define the desired witness-based learner h′. Given a finite set D and
k � |D|, let D[k] be the set of the first k elements (in ascending order) in D, and define

kD = min
{
k � |D||∀D′,D[k] ⊆ D′ ⊆ D : h

(
D′) = h(D)

}
.
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That is, D[kD] contains the minimal amount of elements of D in ascending order where no mind change is witnessed.
In what follows, we use Cx

h(σ) to denote all elements in Ch(σ) up until x, that is, Cx
h(σ) = {x′ � x|ϕh(σ)(x

′) = 1}.
Then, for any finite set D, define

ϕs(D)(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if x ∈ D;
0, else, if ϕh(D)(x) = 0;
1, else, if ∀D′,D ⊆ D′ ⊆ D ∪ Cx

h(D) : h(D) = h′(D);
0, otherwise.

Note that for any locking set D of some language L, we have Cs(D) = L. Then, for any finite set D, we define the
learner

h′(D) =
{

ind(D[kD]), if ∃x < max(D[kD]), x /∈ D[kD] : ϕh(D[kD])(x) = 1;
s(D[kD]), otherwise.

Intuitively, the learner first searches the minimal amount of elements where no mind change is witnessed. Then,
given D[kD], if the learner on input D[kD] witnesses an element to be (possibly) out of order, it outputs ind(D[kD]).
This way, we keep this element as a witness for a possible, later mind change. Otherwise, the learner outputs
s(D[kD]) which conducts a forward search and enumerates all elements where no mind change is witnessed.

Formally, we first show that h′ learns L correctly. Let therefore L ∈ L. We distinguish the following cases.

1. Case: L is finite. Here, h(L) is a correct conjecture and, thus, h(L[kL]) as well. Note that, in particular,
L[kL] is a locking set for L. As there exists no x < max(L[kL]) with ϕh(L[Lk])(x) = 1, we have that
h′(L[kL]) = s(L[kL]). Since L[kL] is a locking set, s(L[kL]) is a correct conjecture.

2. Case: L is infinite. Let Tc be the canonical text for L and let n0 ∈ N be minimal such that D0 :=
content(Tc[n0]) is a locking set for h on L. As, for all n < n0, content(Tc[n]) is no locking set,
there exists some xn ∈ L where this is witnessed. Let xmax = max{xn|n < n0} and let n1 � n0 such
that, for Dn1 := content(Tc[n1]), we have xmax ∈ Dn1 . Then, for any D with Dn1 ⊆ D ⊆ L, we
have that h′(D) = h′(Dn1). As Dn1 is a locking set, we have that h′(Dn1) = s(Dn1 [kDn1

]) is a correct
hypothesis.

Lastly, we show that h′ is witness-based. Let, to that end, D1 ⊆ D2 ⊆ D3 ⊆ L such that h′(D1) �= h′(D2). We show
that (Ch′(D3) ∩ D3) \ Ch′(D1) �= ∅. For i ∈ {1, 2, 3}, let ki := kDi

and let D′
i := D[ki]. Then, as h′(Di) = h′(D′

i ), it
suffices to show

(Ch′(D′
3)

∩ D3) \ Ch′(D′
1)

�= ∅.

We distinguish the following cases.

1. Case: D′
1 = D′

3. In particular, D′
1 = D′

2 = D′
3. Then, h′(D1) = h′(D2), a contradiction to the initial

assumption.
2. Case: D′

3 \ D′
1 �= ∅. Let x be a maximal such element. Either, x /∈ Ch(D′

1)
and it will not be considered

when enumerating Ch′(D′
1)

. Otherwise, x /∈ Ch′(D′
1)

as it either is less than max(D′
1) or it will not be

enumerated by s(D′
1) as it witnesses a mind change.

3. Case: D′
1 \ D′

3 �= ∅. If D′
3 ⊆ D′

1, then, as D1 ⊆ D3, the minimality of k1 is violated. Thus, it also holds that
D′

3 \ D′
1 �= ∅, and we proceed just as in the previous case. �

This completes the study of set-driven learners following delayable learning restrictions. It remains to be shown
that Gold-style learners may be assumed strongly decisive. We do so in two steps. First, we show that unrestricted
learners may be assumed strongly non-U-shaped in general. The idea is to search for locking sequences. If we wit-
ness that the current sequence is not locking, we poison the produced hypothesis [8]. We can do so, as indexed
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families provide a decision procedure to check whether x ∈ Li or not. When poisoning, we simply output a hypoth-
esis contradicting all of the given languages. Note that, by Theorem 1, we may construct poisoned hypotheses on
the fly.

Theorem 12. We have [TxtGSNUEx]ind = [TxtGEx]ind.

Proof. The inclusion [TxtGSNUEx]ind ⊆ [TxtGEx]ind is immediate. For the other direction, note that G-learners
may be assumed total by Theorem 2. Thus, by Theorem 1, it suffices to show that[

τ(CInd)TxtGExC

] ⊆ [
τ(CInd)TxtGSNUExC

]
.

Let h be a τ(CInd)TxtGExC-learner and let L ⊆ τ(CInd)TxtGExC(h). We provide a τ(CInd)TxtGSNUExC-
learner for L = (Li)i∈N. The idea is the following. Since L is indexed, there exists a procedure to decide whether
x ∈ Li or not. Given any input, we check whether it serves as a locking sequence. Note that TxtGEx-learners may
be assumed strongly locking [14]. While it does so, we mimic the learner on this input. Once we figure it not being a
locking sequence, we start poisoning this guess such that it does not refer to any of the possible languages Li . Thus,
the resulting learner will output the correct language once it finds a locking sequence thereof.

Formally, we first define the auxiliary predicate which, given a sequence σ and an element x ∈ N, tells us
whether σ is a candidate for a locking sequence up until the element x, that is,

Q(σ, x) =
{

1, if ∃σ ′ ∈ (Cx
h(σ))

�x

#
, σ ⊆ σ ′∃y � x : ϕh(σ)(y) �= ϕh(σ ′)(y);

0, otherwise.

Again, we use Cx
h(σ) to denote all elements in Ch(σ) up until x, that is, Cx

h(σ) = {x′ � x|ϕh(σ)(x
′) = 1}. Next, the

S-m-n Theorem provides us with an auxiliary function which poisons conjectures on non-locking sequences. There
exists s ∈ R such that for all x ∈ N and σ ∈ Seq

ϕs(σ )(x) =

⎧⎪⎨⎪⎩
ϕh(σ)(x), if Q(σ, x) = 0;
0, else, if x ∈ Lx−min{y∈N|Q(σ,y)=1};
1, otherwise.

Note that in the second case {y ∈ N|Q(σ, y) = 1} is non-empty (as the first case does not hold) and that its elements
are bounded by x. Lastly, we need the following auxiliary function which finds the minimal sequence on which h

agrees with the current hypothesis up until some point. For any sequence σ , define

M(σ) = {
σ ′ ⊆ σ |∀σ ′′ ∈ content(σ )

�|σ |
# ∀x � |σ | : ϕh(σ)(x) = ϕh(σ ′�σ ′′)(x)

}
.

Finally, we define the learner h′ as, for any sequence σ ,

h′(σ ) = s
(
min

(
M(σ)

))
.

Now, let L ∈ L and let T ∈ Txt(L). We show that h′ converges to a correct hypothesis and, afterwards, show the
learner to be strongly non-U-shaped. As h is strongly locking, there exists a minimal n0 ∈ N such that T [n0] is a
locking sequence for h on L. In particular, there exists n1 � n0 such that, for all n < n0, T [n] /∈ M(T [n1]), that is,
all sequences prior to T [n0] are not locking. Then, for all n � n1, we have that min(M(T [n])) = T [n0] and, thus,
h′(T [n]) = s(T [n0]). Furthermore, for any x ∈ N, we have that Q(T [n0], x) = 0 as all the sequences output the
same hypothesis. Thus, ϕs(T [n0]) = ϕh(T [n0]), meaning that s(T [n0]) is a C-index for L.

We now show that successful learning is also strongly non-U-shaped. First, we show, for all n < n0, that s(T [n])
is no C-index for L. By minimality of n0, T [n] is no locking sequence for h on L. Now, if h(T [n]) is no C-index of
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L, neither will s(T [n]) be, as it either outputs the same as h(T [n]) or eventually contradicts all languages in L. If,
otherwise, h(T [n]) is a C-index of L, there exists some point x ∈ N witnessing T [n] not to be a locking sequence.
Then, s(T [n]) starts contradicting all languages in L. Thus, s(T [n]) and also h′(T [n]) is no C-index for L. �

Building on this result, we go one step further and show the learners to be even strongly decisive. The strategy
the newly found learner employs is to wait before changing its hypothesis until it witnesses a mind change. And,
when doing so, it first checks whether this mind change produces a new hypothesis which is different from all
previous ones.

Theorem 13. We have [TxtGSDecEx]ind = [TxtGSNUEx]ind.

Proof. The inclusion [TxtGSDecEx]ind ⊆ [TxtGSNUEx]ind follows immediately. For the other, it suffices, by the
observation that G-learners may be assumed total (Theorem 2) and by Theorem 1, to show that[

τ(CInd)TxtGSNUExC

] ⊆ [
τ(CInd)TxtGSDecExC

]
.

To that end, let h be a learner and let L ⊆ τ(CInd)TxtGSNUExC(h). We define an equivalently powerful
τ(CInd)TxtGSDecExC-learner h′ as follows. Let h′(ε) = h(ε) and, for any finite sequence σ �= ε, let σ ′ � σ

be the minimal sequence on which h′(σ ′) = h′(σ−), that is, the sequence on which h′ based its previous output.
Then, define

h′(σ ) =

⎧⎪⎨⎪⎩
h(σ ′), if ∀σ ′′, σ ′ ⊆ σ ′′ ⊆ σ : h(σ ′) = h(σ ′′);
h(σ ), else, if ∀σ ′′ ⊆ σ ′ ∃x � |σ | : ϕh′(σ ′′)(x) �= ϕh(σ)(x);
h(σ ′), otherwise.

As h′ mimics h, h′ always outputs C-indices and, hence, is τ(CInd). The intuition is to only update the hypothesis
if the current hypothesis cannot be based on a locking sequence and if all previous ones are witnessed to be seman-
tically different. As h is SNU, h′ may never abandon a correct guess and all hypotheses before that are incorrect.
Thus, h′ preserves the learning power.

Formally, we first show that h′ is, indeed, SDec. We do so by showing that whenever h′ makes a mind change,
this new hypothesis is certainly semantically different from all previous ones and, thus, also syntactically different.
Let L ∈ L and let σ ∈ L∗

# such that h′(σ−) �= h′(σ ), that is, h made a mind change. Note that h′(σ ) = h(σ ).
Furthermore, let h′ base its prior hypothesis on σ ′ ⊆ σ−, that is, σ ′ ⊆ σ− is the minimal sequence on which, for
all σ ′′ with σ ′ ⊆ σ ′′ ⊆ σ−, we have h′(σ ′′) = h′(σ−). The only case where h′ makes a mind change is, if for all
σ ′′ ⊆ σ ′ there exists x � |σ | such that

ϕh′(σ ′′)(x) �= ϕh(σ)(x).

As h′(σ ) = h(σ ) and, therefore, ϕh(σ) = ϕh′(σ ), we have, for all σ̃ ⊆ σ ′,

Ch′(σ̃ ) �= Ch′(σ ).

As there are no further mind changes until σ−, this holds for all σ̃ � σ . Thus, h′ is SDec.
To show that h converges correctly, let L ∈ L and let T ∈ Txt(L). Then there exists a (minimal) n0 such that,

for all n � n0, h(T [n0]) = h(T [n]) and h(T [n]) is a C-index for L. We distinguish the following cases.

1. Case: h′(T [n0]) = h(T [n0]). In this case, h′(T [n0]) is a correct C-index and, as h never changes its mind
again, neither does h′.
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2. Case: h′(T [n0]) �= h(T [n0]). Let n1 < n0 be such that h′(T [n0]) = h(T [n1]). In particular, h(T [n1]) �=
h(T [n0]). Thus, the first case of the definition of h′ cannot hold. By h being SNU and by the minimal
choice of n0, there exists some minimal n2 � n0 such that h′ witnesses all hypotheses prior to (and
including) h(T [n1]) to differ from h(T [n2]). Then, by the second case of the definition, it will output
h(T [n2]) never to change its mind again. �

Altogether, we obtain the full map as depicted in Fig. 1(a). It remains open to include partially set-driven learners
into this picture. Due to known results from literature and the results we obtain, it remains to be shown whether Gold-
style learners may be assumed strongly decisive and partially set-driven at the same time. We pose the following
open question.

Open Problem 1. May Gold-style strongly decisive learners be assumed partially set-driven so?

6. Comparing convergence criteria
In this section we compare total learners under various memory constraints which converge syntactically to such

that converge semantically. The gathered results we depict in Fig. 1(b). Usually, semantically converging learners are
more powerful than their syntactic counterpart. This can be observed, for example, when learning arbitrary classes
of languages [14]. However, when learning indexed families class-comprisingly different results are obtained.

We first gather known results which can be easily obtained from learning with (possibly) partial learners, by
either applying Theorem 2 or slightly adapting the known proof. In the latter case, we provide the proofs for com-
pleteness reasons. It is known that explanatory G-learners and behaviorally correct ones are equally powerful [29].
By Theorem 2, this also holds true for total learners (compare Equation (2)). Furthermore, it is known that Gold-style
learners do not rely on the order of the presented elements but rather on the time given [1,14,33] (see Equation (3)).
By patching in the information given [7,10,23], even iterative Bc-learners are as powerful as Gold-style Bc-learners
(see Equation (4)). As patching changes the hypothesis with every new datum, this approach does not work for
explanatory iterative learners. It is known that this problem cannot be solved as there exists a well-known class
separating set-driven explanatory learners from iterative ones [16,26] (compare Equation (5)). On the other hand,
each iterative learner can be made set-driven by simply, given all data, mimicking the iterative learner on input with
pause-symbols between each two elements [18,26] (compare Equation (6)).

Theorem 14. We have

[RTxtGEx]ind = [RTxtGBc]ind, [29], (2)

[RTxtPsdEx]ind = [TxtGEx]ind, [1,14,33], (3)

[RTxtItBc]ind = [RTxtGBc]ind, [7,10,23], (4)

[RTxtSdEx]ind \ [RTxtItEx]ind �= ∅, [16,26], (5)

[RTxtItEx]ind ⊆ [RTxtSdEx]ind, [18,26]. (6)

Proof. Most of these results are either known or immediately obtainable. We include the proofs for completeness
reasons.

Eq. (2): It is known that [TxtGEx]ind = [TxtGBc]ind [29]. With Theorem 2, we get the desired.
Eq. (3): The inclusion [RTxtPsdEx]ind ⊆ [TxtGEx]ind is straightforward. For the other, we follow the proof

of the analogous result when learning classes of recursively enumerable languages [14]. Let h TxtGEx-
learn L with respect to a hypothesis space H. Without losing generality, see Theorem 2, let h be total.
We define a Psd-learner h′ using an auxiliary function M ∈ R as, for all finite sets D ⊆ N and t ∈ N,

M(D, t) =
{
σ ∈ D

�t
# |∀τ ∈ D

�t
# : h(σ ) = h(στ)

};
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h′(D, t) =
{

h(min(M(D, t))), if M(D, t) �= ∅;
h(ε), otherwise.

Intuitively, h′ mimics h on minimal potential locking sequences. Note that h′ is total as h is so. To
show that h learns L, let L ∈ L and T ∈ Txt(L). Let σ0 be the minimal locking sequence of h on L.
We show that h′ eventually converges to h(σ0). To that end, let n0 ∈ N be large enough such that, with
D0 = content(T [n0]), we have

• content(σ0) ⊆ D0,
• σ0 � n0 and
• for all σ < σ0 there exists σ ′ ∈ (D0)

�n0
# such that h(σ ) �= h(σσ ′), i.e., σ ′ witnesses σ /∈

M(D0, n0).

Then, for all n � n0, we have min(M(content(T [n]), n)) = σ0 and thus h′ converges to h(σ0). As this
is a correct hypothesis for L, h′ learns L.

Eq. (4): Immediately, we have [RTxtItBc]ind ⊆ [RTxtGBc]ind. We apply a padding argument [23] for the
other direction. By Theorem 1, it suffices to show that[

τ(CInd)TxtGBcC

] ⊆ [
τ(CInd)TxtItBcC

]
.

Let h be a τ(CInd)TxtGBcC-learner and let L ⊆ τ(CInd)TxtGBcC(h). Recall that pad is an injective
padding function such that for all e ∈ N and all finite sequences σ we have ϕpad(e,σ ) = ϕe. We define
the iterative learner h′ for all previous hypotheses p, all finite sequences σ and all x ∈ N,

h′(∅) = pad
(
h(ε), ε

);
h′(pad(p, σ ), x

) = h′(pad
(
h
(
σ�x

)
, σ�x

))
.

It is immediate to see that, for all sequences σ , we have ϕ(h′)∗(σ ) = ϕh(σ). Thus, h′τ(CInd)TxtItBc-
learns L.

Eq. (5): This is a standard proof and we include it for completeness [16]. By Theorem 1, it suffices to provide a
class of languages L which is τ(CInd)TxtSdExC-learnable but not τ(CInd)TxtItExC so. We define
L := {N \ {0}} ∪ {D ∪ {0}|D ⊆Fin N}. Then, the following learner learns L. Fix p0 as a code for the
language N \ {0} and define, for any finite sequence σ ,

h(σ ) =
{

p0, if 0 /∈ content(σ );
ind(content(σ )), otherwise.

It is immediate that h learns L. Now, assume there exists an iterative learner h′ which τ(CInd)TxtItEx-
learns L. Let L = N \ {0}, let T be a text of L and let n0 ∈ N such that for all n � n0 we have
h′(T [n0]) = h′(T [n]). Let x = max(content(T [n0])), then on the following two texts of distinct
languages in L

T1 = σ�
(
x′ + 1

)�0∞;
T2 = σ�

(
x′ + 2

)�0∞,

the learner h′ generates the same hypotheses. Thus, it is unable to distinguish between these two.
Therefore, L cannot be learned by h′.
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Eq. (6): This is a standard proof and we include it for completeness [18]. Let h TxtItEx-learn the indexed
family L with respect to H. We provide a Sd-learner learning L. To that end, we expand the hypothesis
space H by adding all finite sets. This new hypothesis space we denote by H′. For ease of notation, we
refer to these new indices as, for all D, ind(D). Now, for any set D, let sort#(D) be the sequence of
the elements in D sorted in ascending order, with a # between each two elements. Furthermore, let h∗
be the starred form of h. Now, we define h′ as, for all finite sets D,

h′(D) =
{

h∗(sort#(D)), if h∗(sort#(D)) = h∗(sort#(D)�#);
ind(D), otherwise.

To show that h′ learns L with respect to H′, let L ∈ L. If L is finite, then either h∗(sort#(L)) =
h∗(sort#(L)�#), in which case h converges to h′(L) = h∗(sort#(L)) on text sort#(L)�#∞. Otherwise,
we have h′(L) = ind(L). In both cases, h′ learns L as h′(L) is a correct hypothesis for L.
On the other hand, if L is infinite, then h converges to a correct hypothesis for L on the text sort#(L).
Let σ0 be the initial sequence of sort#(L) on which h has converged and let D0 = content(σ0). Then,
for all x ∈ N \ D0, we have h∗(σ0

�x) = h∗(σ0) = h∗(σ0
�#) as h is iterative. Therefore, for all D′

with D0 ⊆ D′ ⊆ L, we have h∗(sort#(D′)) = h∗(sort#(D′)�#) and h∗(sort#(D′)) = h∗(sort#(D0)),
which is a correct hypothesis for L. As h′(D′) = h(sort#(D′)), we have the convergence of h′ to a
correct hypothesis for L and, thus, h′ learns L. �

Interestingly, only iterative learners benefit from loosening the convergence criterion. We have already investi-
gated the situation for Gold-style and partially set-driven learners. Now, we conclude this section by showing that,
first, total set-driven learners and then also transductive ones do not benefit from this relaxation.

Considering set-driven learners, we first show that behaviorally correct such learners may be assumed target-
cautious in general. We do so by conducting a forward search, checking the learners output on each possible future
hypothesis. Should we detect inconsistencies, we know that the current information is not locking and, thus, we can
stop the enumeration. This way, no overgeneralization will happen as, otherwise, locking sets must be included in
the search.

Lemma 15. We have [τ(Cons)TxtSdCautTarBc]ind = [RTxtSdBc]ind.

Proof. The inclusion [τ(Cons)TxtSdCautTarBc]ind ⊆ [RTxtSdBc]ind is straightforward. By Theorem 1, for the
other direction it suffices to show[

τ(CInd)TxtSdBcC

] ⊆ [
τ(CIndCons)TxtSdCautTarBcC

]
.

We apply a similar construction of forward searches as when learning arbitrary classes of languages [12]. Let h be
a total learner with L = τ(CInd)TxtSdBcC(h). According to Theorem 3, we may assume h to be consistent on
any input. Now, define a τ(CIndCons)TxtSdCautTarBcC-learner h′ as follows. Let, for all x ∈ N and finite sets
D ⊆ N,

E(x,D) := D ∪ {x} ∪ {
x′ � x|ϕh′(D)

(
x′) = 1

};
ϕh′(D)(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if x ∈ D;
0, else, if ϕh(D)(x) = 0;
1, else, if ∀D′′,D ⊆ D′′ ⊆ E(x,D) : E(x,D) ⊆ Ch(D′′);
0, otherwise.

Intuitively, the conjecture of h′(D) contains D itself and certain additional elements of the hypothesis of h on D.
For these additional elements, h′ checks whether all possible future hypotheses of h contain these elements as well.
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If so, h′ adds them in its hypothesis, otherwise it does not. This way, we prevent overgeneralizing target languages.
Note that by construction h′ is τ(CIndCons). Furthermore, note that, for any finite set D, we have

Ch′(D) ⊆ Ch(D). (7)

We first show that h′Bc-learns any language L ∈ L. We distinguish the following cases.

Case 1: L is finite. Since h learns L, we have ϕh(L) = χL. Consider h′(L). Now, for any element x ∈ L,
we have ϕh′(L)(x) = 1, by definition. For any element x /∈ L, we have ϕh(L)(x) = 0 and, therefore,
ϕh′(L)(x) = 0 as well. Thus, ϕh′(L) = χL and h′ learns L.

Case 2: L is infinite. Let D0 be a BcC-locking set for h on L. We show that, for any D with D0 ⊆ D ⊆ L,
h′(D) is a correct hypothesis for L. We need to show that L = Ch′(D). Note that, by Condition (7),
Ch′(D) ⊆ Ch(D) = L. Thus, it remains to be shown that L ⊆ Ch′(D). To that end, let x ∈ L. If x ∈ D,
then x ∈ Ch′(D) by consistency. Otherwise, we have ϕh(D)(x) = 1 and, thus, are in the third case of the
definition of h′. We show that x gets enumerated this way. By Condition (7), we get

E(x,D) = D ∪ {x} ∪ {
x′ � x|ϕh′(D)

(
x′) = 1

}
⊆ D ∪ {x} ∪ {

x′ � x|ϕh(D)

(
x′) = 1

} ⊆ L.

As D0, and therefore also D, is a BcC-locking set, we have for all D′′ with D ⊆ D′′ ⊆ L that

E(x,D) ⊆ L = Ch(D′′).

So the third condition is met and, therefore, ϕh′(D)(x) = 1. Hence, h′BcC-learns L.

Finally, it remains to be shown that h′ is target-cautious. To that end, assume that h′ is not target-cautious. Thus,
there exists a language L ∈ L and a set D ⊆ L such that L � Ch′(D). Let x̃ ∈ Ch′(D) \ L and let D0 ⊇ D be a
BcC-locking set for L on h. Let x′ := max((D0 ∪ {x̃}) \ D. As x′ ∈ Ch′(D) but not in D, it must be enumerated by
the third condition of the definition of h′. Note that D0 ⊆ E(x′,D) (as D0 must be enumerated until x′). Now, for
all D′′ with D ⊆ D′′ ⊆ E(x′,D), it must hold that

x̃ ∈ E
(
x′,D0

) ⊆ Ch(D′′).

However, this is a contradiction for D′′ = D0 as Ch(D0) = L but x̃ /∈ L. This concludes the proof. �

In a second step, we construct an explanatory learner from the target-cautious behaviorally correct learner.
The idea is to always mimic the Bc-learner on the �-minimal set on which it is consistent. This way, we obtain
syntactic convergence. On the other hand, the final hypothesis cannot be incorrect as, eventually, the learner has
enough information to figure out incorrect guesses and, as it is target-cautious, these consistent conjectures are no
overgeneralizations.

Theorem 16. We have [RTxtSdEx]ind = [RTxtSdBc]ind.

Proof. The inclusion [RTxtSdEx]ind ⊆ [RTxtSdBc]ind is immediate. For the other, by Theorem 1, it suffices to
show that[

τ(CInd)TxtSdBcC

] ⊆ [
τ(CInd)TxtSdExC

]
.

Let h be a learner and let L ⊆ τ(CInd)TxtSdBcC(h). By Theorem 15, we may assume h to be target-cautious.
We provide a learner h′ which ExC-learns L. The main idea is to search for the first set on which the learner h is
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consistent. By its target-cautiousness, this way we will, eventually, conjecture the right language. For the formal
details, fix a total order � on finite sets. For any finite set D, we define the following auxiliary functions as

M(D) = {
D′ ⊆ D|∀x ∈ D : ϕh(D′)(x) = 1

}
.

Finally, for any finite set D, define h′(D) = h(min�(M(D))). To show correctness, let L ∈ L. We distinguish the
following cases.

1. Case: L is finite. Let D′ ⊆ L such that h′(L) = h(D′). Since D′ ∈ M(L), we have L ⊆ Ch(D′). Since h is
target-cautious, the equality holds, that is, L = Ch(D′). Thus, h′(L) = h(D′) is a correct hypothesis.

2. Case: L is infinite. Let D0 ⊆ L be the �-minimal set such that Ch(D0) = L. Let D1 ⊇ D0 such that
D1 ⊆ L and min�(M(D1)) = D0. Such a set exists as h, due to the minimal choice of D0, conjectures
incorrect guesses on D′ ⊆ L with D′ < D0 which do not overgeneralize the target language. Then,
for any D, with D1 ⊆ D ⊆ L, we have h′(D) = h(D0), a correct conjecture. �

Finally, behaviorally correct transductive learners, being unable to save any information about previous guesses,
can be made explanatory immediately. One simply awaits a non-? guess and then checks for the first element in this
guess which also produces a non-?.

Theorem 17. We have [RTxtTdEx]ind = [RTxtTdBc]ind.

Proof. The inclusion [RTxtTdEx]ind ⊆ [RTxtTdBc]ind follows immediately. For the other, it suffices, by Theo-
rem 1, to show that[

τ(CInd)TxtTdBcC

]
ind ⊆ [

τ(CInd)TxtTdExC

]
ind.

Let h be a τ(CInd)TxtTdBcC-learner and let L ⊆ τ(CInd)TxtTdBcC(h). We define M ∈ R and h′ ∈ R such that
for all x ∈ N, y ∈ N#,

M(x) = {
x′ � x|ϕh(x)

(
x′) = 1 ∧ h

(
x′) �= ?

};
h′(y) =

⎧⎪⎨⎪⎩
h(#), if y = #;
?, else, if h(y) = ?;
h(min(M(y))), otherwise.

By construction, h′ is only outputs C-indices (or ?). Intuitively, h′ outputs the hypothesis of h on the smallest element
in the hypothesis h on the current datum (if it is not “?”). We claim that h′ learns L. Let L ∈ L. First, note that for
any x ∈ L, we have that either h(x) = ? or h(x) is a C-index of L. If that were not the case, h would not identify L

on any text which has infinitely many occurrences of x. Furthermore, for at least one x ∈ L, h(x) must not be “?”.
Thus, there exists a minimal x′ ∈ L, such that h(x′) is a characteristic index of L. The idea of this construction is to
search for such minimal x′. Note that, if h(x) �= ?, M(x) �= ∅ as x ∈ M(x).

Let T ∈ Txt(L) and let n0 ∈ N be minimal such that content(T [n0]) �= ∅ and such that h(T (n0 − 1)) �= ?.
Then, h′(T (n0 − 1)) = h(min(M(T (n0 − 1)))), a correct guess. Furthermore, for n > n0 either h(T (n)) = ?
and with it h′(T (n)) = ? or, otherwise, h′(T (n)) = h(min(M(T (n)))) = h(min(M(T (n0 − 1)))). Thus, we have
ExC-convergence. �

We remark that all these results, except for Lemma 15 and Theorem 16, also hold for (possibly) partial learners.
These are obtained either directly, for example by applying Theorem 2, or by slightly changing the provided proofs.
However, one cannot directly translate Lemma 15, and therefore Theorem 16, as, in the forward search, totality
of the learner is key. Otherwise, this search can be indefinite, breaking the indexability. We conclude this work by
posing the following open question.

Open Problem 2. Does [TxtSdEx]ind = [TxtSdBc]ind hold?
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[4] J. Berger, M. Böther, V. Doskoč, J. Gadea Harder, N. Klodt, T. Kötzing, W. Lötzsch, J. Peters, L. Schiller,

L. Seifert, A. Wells and S. Wietheger, Learning languages with decidable hypotheses, in: Computability in
Europe (CiE), 2021, pp. 12813:25–12813:37.

[5] L. Blum and M. Blum, Toward a mathematical theory of inductive inference, Information and Control 28
(1975), 125–155. doi:10.1016/S0019-9958(75)90261-2.

[6] M. Blum, A machine-independent theory of the complexity of recursive functions, Journal of the ACM 14
(1967), 322–336. doi:10.1145/321386.321395.

[7] L. Carlucci, J. Case, S. Jain and F. Stephan, Results on memory-limited U-shaped learning, Information and
Computation 205 (2007), 1551–1573. doi:10.1016/j.ic.2007.04.001.

[8] J. Case and T. Kötzing, Strongly non-U-shaped language learning results by general techniques, Information
and Computation 251 (2016), 1–15. doi:10.1016/j.ic.2016.06.015.

[9] J. Case and C. Lynes, Machine inductive inference and language identification, in: International Colloquium
on Automata, Languages and Programming (ICALP), 1982, pp. 107–115. doi:10.1007/BFb0012761.

[10] J. Case and S.E. Moelius, U-shaped, iterative, and iterative-with-counter learning, Machine Learning 72(1–2)
(2008), 63–88.

[11] J. Case and S.E. Moelius, Optimal language learning from positive data, Information and Computation 209
(2011), 1293–1311. doi:10.1016/j.ic.2011.07.003.
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